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1. Introduction

Let G be a countable group and µ be a probability measure on G. A random walk on G
with step law µ is the process Wn = G1 . . . Gn where (Gn)n≥1 are independent, identically
distributed random elements of G with law µ. Formally, the sequence (Gn)n≥1 takes values in
GN equipped with the product σ-algebra. The law of this full sequence of increments/steps
is µ⊗N. We call (GN, µ⊗N) the step space. Consider the map walk : GN → GN mapping each
step sequence (gn)n≥1 to (wn = g1 . . . gn)n≥1. (Wn)n≥1 = walk((Gn)n≥1). We denote the law
of a random sample path, by P = walk∗(µ

⊗N). We will call the measurable space Ω = GN

equipped with the probability measure P the path space. Now suppose G acts on a metric
space (X, d) by isometries and let o ∈ X be a base-point. We are interested in understanding
the asymptotic properties of a random sample path (Wn · o)n≥1. Before we proceed to discuss
these properties, we list some basic examples to keep in mind:

Examples:

(1) G = Z, X = R, o = 0 and µ = 1
2
(δ1 + δ−1).

(2) G = F2 = ⟨a, b⟩ the free group on two generators. Let X be the Cayley graph
of F2 with respect to the set {a, b} and o = e. X is a 4-valent tree. Consider
µ = 1

4
(δa + δa−1 + δb + δb−1).

(3) Take G to be any countable subgroup of PSL(2,R), the group of orientation-preserving
isometries of H2, X = H2 and o = i. For instance, pick any A,B ∈ PSL(2,R) and
consider G = ⟨A,B⟩ with µ = 1

2
(δA + δB).

(4) G = F∞, the free group on countably infinite generators and let X be its cayley graph.
X is still a tree but no longer locally-finite, it is an infinite volume tree. Note that X
is not proper.

Remark. (1), (2) are examples of a simple random walk. In all examples above, the action
of G on X is the left regular action.

Perhaps the most basic question one can ask about the long-term behaviour of a random
sample path is whether it almost surely travels back to its starting point, o, infinitely often
or not.

Q1: Do typical sample paths escape to infinity?

Formally, we are asking if the random walk is recurrent or transient. For example, the simple
random walk on Zd is recurrent iff d = 1, 2 while the simple random walk on F2 is transient.

Q2: Does the random walk have positive speed?

Assume that the random has finite first moment i.e. E[d(o,W1 · o)] =
∫
G
d(o, g · o)dµ(g) is

finite, then l = limn→∞ d(o,Wn · o)/n exists P-almost surely (cf. proposition 2.7). We have
asked if l > 0 or not. For example, the simple random walk on Zd has l = 0 while the simple
random walk on F2 has l = 1

2
.

Now suppose the random walk is transient. If the ambient space comes with a compactifica-
tion/bordification, we may ask:

Q3: Does the random walk converge to the boundary?

Where recall that a bordification X̄ of X is a Hausdorff, second-countable topological
space together with an embedding X ↪→ X̄ such that the G-action on X extends to X̄ by
homeomorphisms. A bordification will be called a compactification if X̄ is compact. The
boundary of X is ∂X = X̄ −X. Now here’s an answer to Q3:
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Theorem ([MT18]). Let µ be a non-elementary measure on a countable group G which acts
by isometries on a δ-hyperbolic metric space (X, d). Then for all o ∈ X, for P-almost every
sample path (wn · o) the limit limn→∞wn · o ∈ ∂X exists.

When G is hyperbolic and X is its Cayley graph wrt to a finite generating set, the above
theorem was proved in [Kai94]. We will see this proof in proposition 6.4.
When X comes with a bordification X̄ and the random walk converges to the boundary, we
can try to understand the subset of the boundary it converges to by means of the hitting
measure defined as νµ(A) = P(limn→∞ Wn · o ∈ A) for all Borel subsets A of ∂X. It can be
easily seen that µν is µ-stationary. What are the properties of the hitting measure?

Q4: What is the Hausdorff dimension of the hitting measure?

We discuss this question and compute the Hausdorff dimension in a special case following
[BHM11] in section 5. When G < SL(2,R) and X = H2, we have have ∂X ≃ S1 and thus
we can ask:

Q5: Is νµ in the Lebesgue measure class?

In relation to Q5, we mention the following conjecture adapted from [KLP11].

Conjecture (Singularity conjecture). For any finitely supported probability measure µ on
SL(2,R) such that the group generated by the support of µ is discrete, the measure νµ is
singular wrt to the Lebesgue measure.

We will now introduce the main problem that this note is concerned about: the Poisson
boundary indentification problem. Let us reset our minds to back when we were considering
the basic question of recurrence/transience of a random walk, before Q3. Suppose our random
walk is transient and furthermore, the measure µ is non-degenerate i.e. the support of µ
generates G as a semi-group. Since the random walk is transient, P-almost every sample path
escapes to infinity. From a geometric viewpoint, we expect the sample path to travel to a
boundary at infinity. Inspired by this, it is possible to come up with a purely measure-theoretic
notion of boundary. Consider a measurable space (B,FB) together with a measurable map
bnd : Ω → B. Given any sample path w = (wn) we would like to think of bnd(w) as
representing the point at infinity it escapes to. To be able to call (B,FB,bnd) a candidate
boundary, we require it satisfy the following conditions:

• bnd is invariant under the time-shift map T : Ω → Ω, T ((wn)) = (wn+1), i.e.
bnd ◦ T = bnd. We require this because if (wn) escapes to a point b ∈ B then it still
does so if we forget its location at some finitely many times.

• FB is countably generated and separates points of B. This is analogous to bordifica-
tions being second countable.

• Since G acts on Ω component-wise, let us also require bnd to be G-equivariant.

It is therefore natural to ask: is there a maximal candidate boundary for the random walk?
This is the initial object in the category of candidate boundaries (B,FB,bnd) for (G, µ), i.e.
it is a candidate boundary (Bmax,FBmax ,bndmax) such that for any other candidate boundary
(B,FB,bnd), there exists a measurable map f : B → B′ and bnd = f ◦ bndmax P-almost
surely. It turns out that the existence of such a maximal candidate boundary is related to
µ-harmonic functions on G. Henceforth, a candidate boundary will be called a µ-boundary
for (G, µ).

Recall the Poisson representation formula from complex analysis. Let H∞(D) denote the
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set of bounded harmonic functions on D, the unit disc in C. Then we have a duality, an
isometric linear isomorphism between H∞(D) and L∞(S1, Leb).

H∞(D) L∞(S1, Leb)

Take radial limits

Poisson transform

Where the Poisson transform is given as follows: If f ∈ L∞(S1, Leb) then u : D → R defined
by

u(reiθ) =
1

2π

∫ 2π

0

f(eit)P (r, t− θ)dt (∗)

is harmonic. Here P (r, t) is the Poisson kernel:

P (r, t) =
1− r2

1 + r2 − 2r cos(t)

We will now re-write (∗). Let a = reiθ and g be a conformal automorphism of D which maps
0 to a. This is a Blaschke map, for eg, consider g(z) = a−z

1−āz
. Putting z = eit, we see that:

|g′(z)| = 1− |a|2

|1− āz|2
=

1− r2

|1− rei(t−θ)|2
= P (r, t− θ)

Thus the Poisson representation formula (∗) can be re-written as follows:

u(reiθ) =

∫ 2π

0

f(eit)|g′(eit)| dt
2π

Since dt/2π is the Lebesgue measure λ on ∂D = S1, we have:

u(a) =

∫
∂D

f(ξ)dg∗λ(ξ)

We observe that the ingredients of the Poisson representation formula are: boundary data (f
on ∂D), the group Aut(D) and an Aut(∂D)-invariant measure on D (the Lebesgue measure
on ∂D). We now transition from Aut(D) to the measured group (G, µ) as before. A function
f : G → R is called µ-harmonic if for all g ∈ G, f(g) =

∑
h∈G µ(h)f(gh). Let H∞(G, µ)

denote the Banach space of bounded µ-harmonic functions on G. It is natural to therefore
try to understand the relationship between the geometry/algebra of groups and the space
H∞(G, µ). Let us list some examples:
Examples:

(1) G = Z, µ = 1
2
(δ1 + δ−1) (simple random walk). Then:

H(G, µ) = {affine functions} = {f : Z → R | ∀n, f(n) = an+ b, a, b ∈ R}
Thus the only bounded harmonic functions on Z are constants, H∞(G, µ) = R.

(2) G = Z, µ = 1
q+1

δ−1 +
q

q+1
δ1 (biased random walk) where q > 1 is some integer. Then:

H(G, µ) = {f : Z → R | ∀n, f(n) = aq−n + b, a, b ∈ R}
Thus again, the only bounded harmonic functions on Z for the biased random walk
are constants.
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(3) G = F2 = ⟨a, b⟩. Let X be the Cayley graph of G wrt the standard generating set
and consider the simple random walk. Let C(a) denote the words in G starting with
a. Then

f(g) =

{
3−|g|+1 g ∈ C(a)

−3−|g| + 4 g /∈ C(a)

is a non-constant bounded harmonic function on G.

Given any µ-boundary (B,FB,bnd) for (G, µ), we define ν = bnd∗P. In analogy with the
Poisson representation formula for harmonic functions on the unit disk, we define the Poisson
transform Φ : L∞(B, ν) → H∞(G, µ):

∀f ∈ L∞(B, ν),∀g ∈ G,Φ(f)(g) :=

∫
B

fdg∗ν

Given (G, µ), a µ-boundary (B,FB,bnd) is called the Poisson boundary of (G, µ) if the
Poisson transform is bijective. In fact, we show in theorem 6.1, (B,FB,bnd) is maximal if
and only if the Poisson transform is bijective.

Remark. Thus the Poisson boundary of (G, µ) is trivial if and only if every bounded
µ-harmonic function on G is constant.

Given a group G and a non-degenerate probability measure µ on G, we want to identify
its Poisson boundary. In this broad sense, it is extremely challenging. We ask some more
precise questions:

Q6: Are there groups G such that (G, µ) has trivial Poisson boundary for all µ ∈ Prob(G)?

Such groups are called Choquet-Deny groups and have been characterized completely in
[FHTVF19]. On the other hand, G is non-amenable if and only if the Poisson boundary of
(G, µ) is non-trivial for any non-degenerate µ ∈ Prob(G) (cf. [KV83]).

Q7: When G admits a compactification/bordification and µ is non-degenerate and non-
elementary, is ∂G equipped with the hitting measure a model for the Poisson boundary
of (G, µ)?

Kaimanovich’s entropy criterion (cf. [KV83],[Kai00], theorem 7.3) has proved to be a simple,
robust and important tool/guiding principle in solving Q7. Using the strip approximation
technique in [Kai00], he proves:

Theorem. Let G be a non-elementary hyperbolic group. Then for any µ ∈ Prob(G) which
is non-degenerate, with (1) finite entropy and (2) finite logarithmic moment, the Poisson
boundary of (G, µ) is the Gromov boundary of G.

(1) H(µ) = −
∑

g∈G µ(g) log(µ(g)) < ∞.

(2)
∑

g∈G log+ d(o, g · o)µ(g) < ∞.

We give a proof of this theorem in section 7 using theorem 9.2 and theorem 9.3. The strip
approximation technique crucially needs the finiteness of the first logarithmic moment of the
random walk. Recently, [CFFT22] has removed the logarthmic moment condition:

Theorem. For any finite entropy, non-degenerate probability measure µ on a non-elementary
hyperbolic group G, the Gromov boundary is the Poisson boundary of (G, µ).

Their argument is a wonderful application of theory of pivots introduced by Gouezel in
[Gou22] and transformed random walks (cf. [For15],[For17]). We systematically review the
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theory of pivots as required for their argument in section 10. In section 11, we briefly talk
about transformed random walks, a stronger entropy criterion and the pin-down approxima-
tion method of [CFFT22] to prove the theorem.

Reference chart:

• Section 1 Heavily influenced by the set of lectures delivered by Giulio Tiozzo at
Probabilistic Methods in Negative Curvature, ICTS Bangalore, 2023, [Tio].

• Section 2 This section is closely based on Peter Häıssinski‘s lectures at Probabilistic
Methods in Negative Curvature, ICTS Bangalore, 2019, [Häı].

• Section 3, 4, 5 [Häı] and [BHM11].
• Section 6 This section is influenced by Vadim A. Kaimanovich’s lectures at Proba-
bilistic Methods in Negative Curvature, ICTS Bangalore, 2019, [Kai].

– 6.1: [Kai00], 6.2: [LP16], 6.3, 6.4: [LP16] and [Woe00].
– 6.5: [Mar91], 6.6: [Kai00]

• Section 7 [Kai00], [KV83], [LP16].
• Section 8, 9 [Kai00].
• Section 10 [Gou22].
• Section 11

– 11.1: [For17] and [For15].
– 11.2, 11.3: [CFFT22] and [Tio].

Acknowledments. I would like to express my gratitude to Prof. Mahan Mj. for his patience
and guidance. I am also grateful to my friend Balarka Sen for listening to my thoughts on
entropy and random walks. I thank both of them for many insightful discussions. I also
acknowledge that my interest in the topic was greatly energized by interactions with Prof.
Giulio Tiozzo at the Probabilistic Methods in Negative Curvature workshop held at ICTS,
Bangalore in March, 2023.

2. Random Walks on Countable Discrete Groups

Let Γ be a topological space. How to “walk” on Γ? Irrespective of how one walks on Γ,
clearly it produces for us a sequence (xn)n≥0 of elements in Γ where xn is the location of
our walk after the nth step has been made. Thus a random walk on Γ could be prescribed
by a random variable say Z taking values in ΓN the N-fold product of Γ, equipped with the
product topology, the space of sample paths in Γ. Keeping this in mind, we specialize to the
case when Γ is a countable group equipped with the discrete topology. Here we can utilize
the group structure of Γ to walk on it. More precisely:

• Let µ be a Borel probability measure on Γ. Since Γ is discrete, µ is entirely determined
by its values on point sets. Thus, we have a function µ : Γ → R≥0 such that∑

g∈Γ µ(g) = 1.

• Let Ω denote the product space ΓN>0 , equipped with the Borel σ-algebra B and the
product probability measure P = µ⊗N>0 . We will think of Ω as a space of increments.
A typical element of Ω will be denoted ω = (ωn)n≥1.

• For each n ∈ N>0, let Xn : Ω → Γ be the projection onto nth coordinate, i.e.
Xn((ωm)m≥1) = ωn for all (ωm)m≥1 ∈ Ω. Observe that (Xn)n≥1 is a sequence of
Γ-valued i.i.d. random variables with law µ.
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• Then the random walk on Γ with law µ is given by a sequence (Zn)n≥0 of Γ-valued
random variables defined by: Z0 ≡ e, Zn+1 = ZnXn+1 for n ∈ N, where e is the
identity element of Γ.

Definition 2.1. The random walk on Γ with law µ, denoted by RWΓ,µ refers to the
following data: (Ω,B, P, µ, (Xn)n≥1), together with the sequence (Zn)n≥0 defined in terms of
(Xn)n≥1 as above.

Recall that:

Definition 2.2. Suppose (M,A, ν), (N,B, η) are probability spaces and (Q, C) is a measurable
space. Suppose A : M ×N → Q is a measurable function, where M ×N has been equipped
with the product σ-algebra A⊗B and product probability measure ν ⊗ η. The convolution
of ν and η, denoted by ν ∗ η is the push-forward of ν ⊗ η under A. Thus for any bounded
measurable function φ : Q → R:

∫
Q

φd(ν ∗ η) =
∫
M×N

φ ◦ Ad(ν ⊗ η)

=

∫
N

∫
M

φ(A(x, y))dν(x)dη(y)

Remark 2.1. The sequence (Zn)n≥0 is to be thought of as a random sample path in Γ
starting at the identity element. For n ∈ N, Zn is the location of our walk after the nth

step has been made. At each step, an element of Γ is sampled according to the law µ and
multiplied with our current location on the right so as to move to a possibly new group
element. A random walk starting at g ∈ Γ is simply given by the sequence (gZn)n≥0. Let us
observe that:

• The law of Zn is µn := µ∗n, the n-fold convolution of µ.
• Let T = ΓN equipped with the Borel σ-algebra. We think of T as the space of sample
paths in Γ as follows: given a sequence of increments ω ∈ Ω and a starting point
g ∈ Γ, we get the sample path (gZn(ω))n≥0 ∈ T . Thus RWΓ,µ allows us to sample
paths from T according to the law µ ∗ P .

The following proposition highlights the associativity of the convolution operation and in
particular the Markov property of RWΓ,µ.

Proposition 2.1. For all m,n ∈ N>0 and for all x ∈ Γ, µm+n(x) =
∑

y∈Γ µ
m(y)µn(y−1x).
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Proof.

µm+n(x) = P [Zm+n = x]

=
∑
y∈Γ

P [Zm+n = x, Zm = y] (law of total probability)

=
∑
y∈Γ

P [Z−1
m Zm+n = y−1x, Zm = y]

=
∑
y∈Γ

P [
n∏

i=1

Xm+i = y−1x, Zm = y]

=
∑
y∈Γ

P [Zm = y]P [Zn = y−1x] (Zm and
n∏

i=1

Xm+i are independent,
n∏

i=1

Xm+i
d
= Zn)

=
∑
y∈Γ

µm(y)µn(y−1x)

■

Definition 2.3 (Hitting times). Let A ⊂ Γ and x, y ∈ Γ. We define the following hitting
times:

τ 0x,A = 0

τ kx,A = min{n > τ k−1
x,A | xZn ∈ A} for k ≥ 1

We will write τ kxy when A = {y}.

We are interested in studying asymptotic properties of random sample paths. Perhaps the
simplest questions to be asked are those of recurrence.

Definition 2.4 (Recurrence, Transience, Irreducibility, Symmetry). RWΓ,µ is said to be:

• recurrent if almost surely, a sample path starting at e returns to e infinitely often,
i.e. P [Zn = e i.o.] = 1 or equivalently, if P [τ 1ee < ∞] = 1. Otherwise, RWΓ,µ is said to
be transient.

• irreducible if the semi-group generated by supp(µ) equals whole of Γ. Here supp(µ) =
{g ∈ Γ | µ(g) > 0}.

• symmetric if for all g ∈ Γ, we have µ(g) = µ(g−1).

Definition 2.5. We define G : Γ × Γ → [0,∞] by G(x, y) =
∑∞

n=0 P [xZn = y], called the
Green’s function. G(x, y) is the expected number of times a random walk starting at x
visits y.

Proposition 2.2. Let x, y ∈ Γ.

(a) If RWΓ,µ is symmetric, then for all n ∈ N>0, µ
2n(x) ≤ µ2n(e), µ2n+1(x) ≤ µ2n(e).

(b) If RWΓ,µ is irreducible and transient then G(x, y) is finite.
(c) If RWΓ,µ is symmetric then G(x, y) = G(y, x).
(d) If RWΓ,µ is irreducible then G(x, y) > 0.
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Proof. (a):

µ2n(x) =
∑
y∈Γ

µn(y)µn(y−1x) (Proposition 1.1)

≤

(∑
y∈Γ

(µn(y))2

)1/2(∑
y∈Γ

(µn(y−1x))2

)1/2

(Cauchy-Schwarz inequality)

=
∑
y∈Γ

(µn(y))2

=
∑
y∈Γ

µn(y)µn(y−1) (µ is symmetric)

= µ2n(e) (Proposition 1.1)

µ2n+1(x) =
∑
y∈Γ

µ2n(y)µ(y−1x)

≤ µ2n(e)
∑
y∈Γ

µ(y−1x) = µ2n(e)

(b): Consider the hitting probabilities ρxy = Px[τ
1
xy < ∞] where Px is the law of the

random walk starting at x. Recall from [Dur10] that the strong markov property of the
random walk gives us:

Px[τ
k
xy < ∞] = ρxyρ

k−1
yy

Now we define a the random variable N(x, y) =
∑∞

n=0 1[xZn=y] which counts the number of
times a random walk starting at x visits the point y. Note that G(x, y) = E[N(x, y)]. Now
we observe that:

E[N(x, y)] =
∞∑
n=0

P [N(x, y) ≥ k]

=
∞∑
n=0

P [τ kxy < ∞]

=
∞∑
n=0

ρxyρ
n−1
yy

=
ρxy

1− ρyy
=

ρxy
1− ρee

which is finite if the random walk is irreducible (implies ρxy is finite) and transient.
(c): Observe that µ is symmetric implies that µn is symmetric for all n ≥ 1. Then the claim
immediately follows.
(d): Since the random walk is irreducible, the element x−1y belongs to the semigroup
generated by the support of µ, which means that there is a n ≥ 1 for which µn(x−1y) > 0, so
G(x, y) > 0. ■

Claim 2.1. Let x ∈ Γ. Then limsupn→∞(µ2n(x))1/2n = limsupn→∞(µ2n(e))1/2n

Proof. ■
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Thus it makes sense to define:

Definition 2.6. For a random walk RWΓ,µ, we define its spectral radius to be ρ(µ) =
limsupn→∞(µ2n(e))1/2n.

Theorem 2.1 (Kesten’s Criteria). Let Γ be a finitely generated group and µ be a Borel
probability measure on Γ. Then:

(a) If RWΓ,µ is irreducible and ρ(µ) = 1 then Γ is amenable.
(b) If RWΓ,µ is irreducible, symmetric and Γ is amenable then ρ(µ) = 1.

For a proof, refer to [Woe00] section 12.

Corollary 2.1.1. Let Γ be a finitely generated, non-amenable group and µ be a Borel
probability measure on Γ such that RWΓ,µ is irreducible. Then there exist constants C,m > 0
such that:

∀x ∈ Γ,∀n ≥ 1, µ2n(x) ≤ Ce−mn

Definition 2.7. We define F : Γ× Γ → [0, 1] by F (x, y) = P [∃n ∈ N, xZn = y], the hitting
probability that a random walk starting at x visits y.

Proposition 2.3. Let x, y, z ∈ Γ. Then:

(a) G(x, y) = F (x, y)G(e, e)
(b) F (x, y) ≥ F (x, z)F (z, y)

Proof. We have already proved (a) in proposition 2.2 (b) using the boxed relation preceding
the proposition. Let us give a direct proof:

G(x, y) =
∞∑
n=0

P [xZn = y]

=
∞∑
n=0

n∑
k=0

P [xZn = y, τ 1xy = k]

=
∞∑
n=0

n∑
k=0

P [xZk = y, τ 1xy = k,Xk+1 . . . Xn = e]
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Now observe that the events [xZk = y, τ 1xy = k] and [Xk+1 . . . Xn = e] are independent. Also,
that the random variables Xk+1 . . . Xn and Zn−k are distributionally equivalent. Thus:

G(x, y) =
∞∑
n=0

n∑
k=0

P [xZk = y, τ 1xy = k,Xk+1 . . . Xn = e]

=
∞∑
n=0

n∑
k=0

P [xZk = y, τ 1xy = k]P [Zn−k = e]

=
∞∑
k=0

∑
n≥k

P [xZk = y, τ 1xy = k]P [Zn−k = e]

=
∞∑
k=0

P [xZk = y, τ 1xy = k]

(∑
n≥k

P [Zn−k = e]

)

=
∞∑
k=0

P [xZk = y, τ 1xy = k]G(e, e)

= F (x, y)G(e, e)

(b) is immediate. ■

Proposition 2.4. Suppose RWΓ,µ is transient, symmetric and irreducible. Then dG(x, y) :=
− log(F (x, y)) for all x, y ∈ Γ, defines a metric on Γ. Furthermore:

(a) (Γ, dG) is a proper metric space.
(b) Γ acts on (Γ, dG) from the left, by isometries.

Proof.

• Since µ is symmetric, so is F (−,−) and thus dG is symmetric. Alternatively, it follows
from proposition 2.2(c) and proposition 2.3(a).

• Taking negative logarithm on both sides of the inequality in proposition 2.3(b) gives
the triangle inequality for dG.

• Proposition 2.2(d) implies that dG is finite. Transience of the random walk ensures
that dG(x, y) = 0 implies x = y. After all dG(x, y) = 1 if and only if F (x, y) = 1. So if
x ̸= y, we have 1 ≥ ρxx ≥ F (x, y)F (y, x) = 1, so ρxy = 1 which contradicts transience.

• Thus dG is a metric.
• Clearly F is Γ-invariant under the diagonal action. Thus, dG is Γ-invariant under the
diagonal action. It remains to show that dG is proper. Observe that it is enough to
show:

∀ε ∈ (0, 1),∃K ⊂finite Γ, such that ∀x /∈ K,G(e, x) ≤ ε

• Fix ε ∈ (0, 1). Since the random walk is transient, G(e, e) is finite. G(e, e) =∑∞
n=1 µ

2n(e) is finite so there is a k large enough so that:∑
n≥k

µ2n(e) ≤ ε/4
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Now using proposition 2.2(a), we have:∑
n≥k

µ2n(x) ≤
∑
n≥k

µn(e) ≤ ε/4

∑
n≥2k

µn(x) ≤ 2
∑
n≥k

µn(e) ≤ ε/2

Because µ, . . . , µ2k−1 are probability measures, there is a finite subset K such that
µi(Γ−K) ≤ ε/(4k) for 1 ≤ i < 2k. Thus for any x /∈ K, we have:

G(e, x) =
∑

1≤n<2k

µn(x) +
∑
n≥2k

µn(x)

≤
∑

1≤n<2k

µn(Γ−K) +
ε

2
≤ ε

2k
+

ε

2k
= ε

■

We call dG theGreen metric, first introduced in [BB07].Let us now look at some dynamical
aspects of RWΓ,µ. Let σ : Ω → Ω be the left-shift map defined by σ((ωn)n≥1) = (ωn+1)n≥1.

Proposition 2.5. P is a σ-invariant and σ-ergodic measure on Ω.

Proof. This is pretty standard. ■

We recall the statement of the subadditive ergodic theorem:

Theorem 2.2. Let (X,µ) be a measure space and T : X → X be a measurable map such
that µ is T -invariant. Let (fn : X → R)n>0 be a sequence of measurable functions such that:

• ∀m,n ∈ N>0∀x ∈ X, fm+n(x) ≤ fm(x) + fn(T
m(x))

• f1 ∈ L1(µ).

Then, lim
n→∞

fn/n exists a.e. and denoting the limiting function by f , we also have that

fn/n → f in L1(µ). If µ is T -ergodic, then f = infn≥1E[fn]/n.

For a proof, see [Dur10].

Proposition 2.6 (Asymptotic entropy). Consider a random walk RWΓ,µ. If H(µ) =∑
g∈Γ−µ(g)log(µ(g)) < ∞ then the sequence −1

n
log(µn ◦ Zn) converges a.s. and in L1(P ) to

a constant h, which we call the asymptotic entropy of RWΓ,µ.

Proof. For each n ∈ N>0, define fn = −log(µn ◦ Zn). Note that each fn is a non-negative
measurable function and that

∫
Ω
f1dP = E[−logµ] is finite. P is σ-invariant and ergodic.

From proposition (1.1), it follows that for any ω ∈ Ω and m,n ≥ 1 we have:

µm+n(Zm+n(ω)) ≥ µm(Zm(ω))µ
n(Zm(ω)

−1Zm+n(ω))

= µm(Zm(ω))µ
n(

n∏
i=1

Xm+i(ω))

= µm(Zm(ω))µ
n(Zn(σ

m(ω)))

so by the subadditive ergodic theorem, the sequence −1
n
log(µn ◦ Zn) converges a.s. and in

L1(P ) to a constant h and h = infn
−log(µn◦Zn)

n
= infn

H(µn)
n

. ■
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Proposition 2.7 (Drift). Consider a random walk RWΓ,µ. Suppose (X, d) be a metric space
and Γ acts on (X, d) by isometries. Pick any x0 ∈ X. If E[d(x0, X1 ·x0)] =

∑
g∈Γ µ(g)d(x0, g ·

x0) < ∞, then the sequence d(x0, Zn · x0)/n converges a.s. and in L1(P ) to a constant l,
which we call the drift of the random walk.

Proof. For each n ∈ N>0, define fn = d(x0, Zn · x0). Note that each fn is a non-negative
measurable function and that

∫
Ω
f1dP = E[d(x0, X1 · x0)] is finite. P is σ-invariant and

ergodic. For any ω ∈ Ω and m,n ≥ 1 we have:

d(x0, Zm+n(ω) · x0) ≤ d(x0, Zm(ω) · x0) + d(Zm(ω) · x0, Zm+n(ω) · x0)

= d(x0, Zm(ω) · x0) + d(x0, Zm(ω)
−1Zm+n(ω) · x0)

= d(x0, Zm(ω) · x0) + d(x0, Zn(σ
m(ω)) · x0)

So by the subadditive ergodic theorem, the sequence d(x0, Zn · x0)/n converges a.s. and in

L1(P ) to a constant l and l = infn
E[d(x0,Zn·x0)]

n
. ■

Remark. We will be using the Borel-Cantelli lemmas quite often. [Yeo] provides a very neat
review which the reader might want to take a look at.

Lemma 2.1 (Zoning lemma). Consider a random walk RWΓ,µ. Suppose H(µ) < ∞. For
every ε > 0,

(a) There exists a sequence (An) of subsets of Γ such that |An| ≤ en(h+ε) and Zn ∈ An

eventually a.s.
(b) If (Bn) is a sequence of subsets of Γ such that |Bn| ≤ en(h−ε), then Zn /∈ Bn i.o. a.s.

This means that the asymptotic entropy governs the complexity of the random walk, at
least in terms on the size of regions it can visit.

Proof. Let us recall that if (Ωn) is a sequence of events in Ω then:

• {Ωn eventually } = {ω ∈ Ω | ∃n0 = n0(ω), such that for n ≥ n0, ω ∈ Ωn} = ∪n ∩k≥n

Ωk.
• {Ωn i.o. } = {ω ∈ Ω | ∃(nk) = (nk(ω))k, such that for all k, ω ∈ Ωnk

} = ∩n ∪k≥n Ωk.
• ∩nΩn ⊆ {Ωn eventually } ⊆ {Ωn i.o. } ⊆ ∪nΩn

Now note that since H(µ) is finite, proposition 2.6 guarantees the existence of a finite
asymptotic entropy h, and:

for a.e. ω ∈ Ω, lim
n→∞

−1

n
log(µn(Zn(ω))) = h ...(∗)

• Proof of (a): Let Ω′ be the subset of full measure for which the limit in (∗) holds
and consider the sets Ωn = {ω ∈ Ω | µn(Zn(ω)) ≥ e−n(h+ε)} ⊆ Ω. Then (∗) implies
that Ω′ ⊆ {Ωn eventually }, so P ({Ωn eventually }) = 1. Now consider the sets
An = {g ∈ Γ | µn(g) ≥ e−n(h+ε)}. Clearly, Ωn = [Zn ∈ An] so Zn ∈ An eventually a.s.
Also, we have 1 ≥ µn(An) =

∑
g∈An

µn(g) ≥ |An|e−n(h+ε), so |An| ≤ en(h+ε).

• Proof of (b): Consider the sequence of sets Ωn = {ω ∈ Ω | µn(Zn(ω)) ≤ e−n(h−ε/2)}.
Then (∗) implies that P ({Ωn eventually }) = 1, i.e. Zn ∈ Ωn eventually a.s. Consider
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the events [Zn ∈ Bn] ∩ Ωn. We have:

P ([Zn ∈ Bn] ∩ Ωn) =
∑
g∈Bn

µn(g)1[∃ω∈Ωn,Zn(ω)=g]

≤ |Bn|e−n(h−ε/2)

≤ en(h−ε)e−n(h−ε/2)

= e−nε/2

Thus,
∑

n P ([Zn ∈ Bn] ∩ Ωn) converges, so by Borel-Cantelli lemma, we conclude
that P ([Zn ∈ Bn] ∩ Ωn i.o. ) = 0, so P ([Zn ∈ Bn] ∩ Ωn eventually ) = 0. But
P ({Ωn eventually }) = 1, so P ([Zn ∈ Bn] eventually ) = 0.

■

Definition 2.8. Suppose (X, d) is a metric space and Γ acts on (X, d) by isometries. The
volume entropy of Γ in its action on (X, d) is defined to be v = limsupR→∞

1
R
|{g ∈ Γ |

g · x0 ∈ B(x0, R)}| where x0 ∈ X.

Proposition 2.8 (Guivarc’h inequality). Let (X, d) be a metric space and suppose Γ acts on
(X, d) by isometries. Consider the random walk RWΓ,µ on Γ. Pick any x0 ∈ X. Suppose:

(a) E[d(x0, X1 · x0)] < ∞
(b) v = limsupR→∞

1
R
|{g ∈ Γ | g · x0 ∈ B(x0, R)}| < ∞

Then H(µ) < ∞ and h ≤ lv.

Proof. H(µ) < ∞:

• H(µ) =
∑

g∈Γ −µ(g)log(µ(g)) = E[−log(µ)] =
∫∞
0

µ({g ∈ Γ | µ(g) ≤ e−t})dt. We
break this integral up into two parts as follows.

• Let a > 0, to be fixed later. For each t > 0 we consider the set Ax0,t := {g ∈ Γ |
µ(g) ≤ e−t} ∩ {g ∈ Γ | g · x0 ∈ B(x0, at)} and Ãx0,t := {g ∈ Γ | µ(g) ≤ e−t} ∩ {g ∈
Γ | g · x0 /∈ B(x0, at)}.

µ({g ∈ Γ | µ(g) ≤ e−t}) = µ(Ax0,t) + µ(Ãx0,t)

• Fix ε > 0. Then there exists t0 > 0 such that for all t ≥ t0, we have |B(x, t)| ≤ e(v+ε)t.
Therefore, for t ≥ t0/a :

µ(Ax,t) =
∑
g∈Γ

g·x0∈B(x0,at)

µ(g)1[µ(g)≤e−t]

≤ |B(x0, at)|e−t = e(a(v+ε)−1)t

We fix a such that 0 < a < 1/(v + ε).
• Now: ∫ ∞

0

µ(Ax0,t)dt =

∫ t0/a

0

µ(Ax0,t)dt+

∫ ∞

t0/a

µ(Ax0,t)dt

≤ t0
a
+

1− e((v+ε)−a)t0

1− a(v + ε)
< ∞
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0

Ãx0,tdt =

∫ ∞

0

µ({g ∈ Γ | µ(g) ≤ e−t, d(x0, g · x0) ≥ at})dt

≤
∫ ∞

0

µ({g ∈ Γ | d(x0, g · x0) ≥ at})dt

= E[d(x0, X1 · x0)] < ∞

Thus H(µ) < ∞.

h ≤ lv: Fix ε > 0.

(i) v < ∞, so there exists a t0 > 0 such that for all t ≥ t0, we have |{g ∈ Γ | g · x0 ∈
B(x0, t)}| ≤ e(v+ε)t

(ii) (a) implies that we have l ∈ R≥0 such that for a.e. ω ∈ Ω, lim
n→∞

d(x0,Zn(ω)·x0)
n

= l

Consider the sets Bn = {g ∈ Γ | g · x0 ∈ B(x0, (l + ε)n)}. Then (ii) implies that P ({[Zn ∈
Bn] eventually }) = 1. Using the contrapositive of part (b) in the Zoning lemma, we get:
|Bn| ≥ en(h−ε) for all n. Also using (i), for all n ≥ t0, we have |Bn| ≤ en(v+ε)(l+ε). So we have
h− ε ≤ lv + (l + v)ε+ ε2. Taking ε → 0 gives us h ≤ lv. ■

3. Hyperbolicity of the Green metric

We begin with the following observation:

Lemma 3.1. Let Γ be a finitely generated, non-amenable group. Let S be a finite generating
set for Γ and dw be the corresponding word metric on Γ. Consider a symmetric, irreducible
random walk RWΓ,µ with finite exponential moment, that is:

∃λ > 0, E[eλdw(e,Z1)] = E < ∞

Then the identity map (Γ, dG)
idΓ−→ (Γ, dw) is a quasi-isometry.

Proof. Let L = max{dG(e, s) | s ∈ S}.

Claim 3.1. For all x ∈ Γ, dG(e, x) ≤ Ldw(e, x).

Proof. If x = s1 . . . sk where s1, . . . , sk ∈ S, then:

dG(e, x) ≤
k−1∑
j=0

dG(s1 . . . sj, s1 . . . sj+1) (triangle inequality)

≤
k−1∑
j=0

dG(e, sj+1) (Γ-invariance of dG)

≤ Lk

Therefore, dG(e, x) ≤ Ldw(e, x). ■

Claim 3.2. There exist constants c1, c2 > 0 such that for all x ∈ Γ, we have

G(e, x) ≤ c1e
−c2dw(e,x)

Proof. Let b > 0 and for each n ∈ N>0 define Yn = sup1≤k≤ndw(e, Zk). Now y 7→ eλy is a
positive, monotonically increasing function, so by Chebyshev’s inequality:

P [Yn ≥ nb] ≤ e−nλbE[eλYn ]
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Now note that given 1 ≤ k ≤ n, we have:

dw(e, Zk) ≤
k−1∑
j=0

dw(Zj, Zj+1) (triangle inequality)

≤
k−1∑
j=0

dw(e,Xj+1) (Γ-invariance of dG)

≤
n−1∑
j=0

dw(e,Xj+1)

So Yn ≤
∑n−1

j=0 dw(e,Xj+1) for all n ≥ 1. Recall that {Xj}j≥1 is an i.i.d sequence of random

variables. So E[eλYn ] ≤ En. So we have:

P [Yn ≥ nb] ≤ e−n(λb−log(E)) (∗)

Choose b > |log(E)/λ| and let c = λb− log(E). We estimate the Green’s function by breaking
it up into two pieces:

G(e, x) =
∑
n≥0

µn(x) =
∑
n≤ |x|

b

µn(x) +
∑
n>

|x|
b

µn(x)

where, |x| = dw(e, x). For bounding the first piece we use (∗):∑
n≤ |x|

b

µn(x) ≤ |x|
b
sup{µn(x) | 1 ≤ n ≤ |x|

b
}

≤ |x|
b
P [∃n ≤ x

b
, Zn = x]

≤ |x|
b
P [Y|x|/b ≥ |x|]

≤ |x|
b
e−

c
b
|x| ≤ C ′e−

c
2b

|x|

where C ′ > 0 is chosen large enough so that |x| ≤ bC ′ec|x|/2b. Next, using Corollary 2.1.1:∑
n>

|x|
b

µn(x) ≤ C
∑
n>

|x|
b

e−mn ≤ C ′e−
m
b
|x|

for large enough C ′ > 0. Now our claim follows easily. ■

Note that Claim 3.2 implies that the Green metric dominates the word metric:

dG(e, x) ≥ c2dw(e, x)− log(c1)

and therefore together with Claim 3.1 and the Γ-invariance of dG, we have:

∀x, y ∈ Γ, c2dw(e, x)− log(c1) ≤ dG(e, x) ≤ Ldw(e, x)

which implies that idΓ is indeed a quasi-isometry. ■
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Unfortunately, at this point, since we cannot expect (Γ, dG) to be a geodesic metric space,
we cannot immediately conclude in the above lemma that the Green metric is hyperbolic. We
ask, when is a metric space which is quasi-isometric to a geodesic hyperbolic metric space,
also hyperbolic?

Definition 3.1. Let (X, d) be a metric space. For τ ≥ 0 a τ -quasiruler is a quasigeodesic
α : I → X (where I is a connected interval in R), such that for any numbers s < t < u in I,
we have (g(s) | g(u))g(t) ≤ τ . Here (·|·)(·) denotes the Gromov product.
(X, d) is said to be quasiruled if there exist constants λ ≥ 1, τ, c > 0 such that (X, d) is a
(λ, c)-quasigeodesic space and every (λ, c)-quasigeodesic is τ -quasiruled.

Theorem 3.1. Suppose (X, d) is a geodesic hyperbolic metric space, (X ′, d′) is a metric soace
and φ : X → X ′ is a quasi-isometry. Then the following are equivalent:

(1) X ′ is hyperbolic.
(2) X ′ is quasiruled.
(3) φ is a ruling, i.e. there exists a constant τ ≥ 0 such that the image of every geodesic

segement of X under φ is a τ -quasiruler.

Proof. ■

Lemma 2.1 and theorem 3 imply:

Proposition 3.1. Let Γ be a non-elementary hyperbolic group and RWΓ,µ be a symmetric,
irreducible random walk with a finite exponential moment. TFAE:

(1) The map (Γ, dG)
idΓ−→ (Γ, dw) is a quasi-isometry and (Γ, dG) is hyperbolic

(2) [Ancona inequality] For all r > 0 there exists C(r) > 0 such that F (x, y) ≤
C(r)F (x, z)F (z, y) where x, y ∈ Γ and z is any point in Γ within a distance of r from
any dw-geodesic segment joining x to y.

Theorem 3.2. Let Γ be a non-elementary hyperbolic group and RWΓ,µ be a symmetric,
irreducible random walk such that supp(µ) is finite. RWΓ,µ satisfies the Ancona inequality.

Together, theorem 4 and proposition 2.1 imply:

Theorem 3.3. Let Γ be a non-elementary hyperbolic group and RWΓ,µ be a symmetric,
irreducible random walk such that supp(µ) is finite. (Γ, dG) is hyperbolic.

4. Deviation Inequalities

In this section, we prove a couple of deviation inequalities.

Definition 4.1. Let ((X, d), w) be a pointed proper hyperbolic metric space. For R > 0, the
shadow of the ball of radius R centered at a point x ∈ X, is defined to be the set of all
points a ∈ ∂X such that (a|w)x ≤ R or equivalently, (a|x)w ≥ d(x,w)− R and denoted by
Sw(x,R).

Proposition 4.1 (Shadows of balls are almost visual balls). Let (X, d, w) be a pointed
hyperbolic space and equip ∂X with a visual metric of parameter ε > 0. Suppose τ ≥ 0. There
exist constants C,R0 > 0 such that for all R > R0, a ∈ ∂X, x ∈ X such that (w|a)x ≤ τ , we
have:

Bε(a,
1

C
eRεe−εd(w,x)) ⊂ Sw(x,R) ⊂ Bε(a, CeRεe−εd(w,x))
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Lemma 4.1 (Shadow lemma). Let (X, d, w) be a pointed proper hyperbolic metric space
equipped with a geometric action of a non-elementary hyperbolic group Γ. Let dε denote a
visual metric on ∂X for the parameter ε > 0 and ρ denote the Hausdorff measure on (∂X, dε)
of dimension v/ε where v is the volume entropy. There exists R0 > 0 such that for all x ∈ X
and for all R ≥ R0, we have ρ(Sw(x,R)) ≍ e−vd(w,x).

Martin Boundary and harmonic/hitting measure of a random walk:
Let Γ be a countable discrete group and RWΓ,µ be a symmetric, irreducible and transient
random walk on Γ. Let C(Γ) denote the space of continuous real-valued functions on Γ
equipped with the topology of pointwise convergence. Consider the map Φ : Γ → C(Γ)
defined by:

∀x, y ∈ Γ,Φ(y)(x) = Ky(x) :=
G(x, y)

G(e, y)

Ky is called a Martin kernel and is in particular a µ-harmonic function:

∀x, y, z ∈ Γ, Ky(x) =
∑
z∈Γ

Ky(z)µ(x
−1z)

This follows from the observation that G(x, y) =
∑

z∈Γ µ(x
−1z)G(z, y).

Claim 4.1. Φ is injective and the closure of Φ(Γ) in C(Γ) is compact.

The Martin boundary of RWΓ,µ is defined to be ∂MΓ := Φ(Γ) − Φ(Γ), with the subspace
topology. Next, observe that Ky(x) = exp(dG(e, y)− dG(x, y)). Thus the Martin boundary
coincides with the horofunction boundary of Γ wrt the Green metric. The following is a
result due to Kaimanovich from [Kai00].

Theorem 4.1 (V. Kaimanovich). Let Γ be a finitely generated non-elementary hyperbolic
group and let w ∈ Γ. Let dw be the word metric on Γ wrt to some finite generating set of Γ.
Consider a symmetric, irredicuble random walk RWΓ,µ on Γ with finite first moment. Then
(Zn(w))n≥0 almost surely converges to a point Z∞(w) on the boundary ∂Γ.
For each a ∈ ∂Γ, choose a quasigeodesic [w, a) in a measurable way. For each n there is a
measurable map πn : ∂Γ → Γ such that πn(a) ∈ [w, a) and for almost every trajectory of the
random walk,

lim
n→∞

dw(Zn(w), πn(Z∞(w)))

n
= 0

Given any a ∈ ∂Γ, the sequence (πn(a))n is a discrete approximation of the quasigeodesic
ray [w, a) so the theorem tells us that almost surely, dw(Zn(w), Z∞(w)) = o(n), i.e a random
sample path is sublinearly tracked by quasigeodesic rays. We will see more about this
in the coming sections.
Under the assumptions of theorem 6, we define the hitting measure ν on ∂Γ as νw(A) =
P [Z∞(w) ∈ A] for every Borel-measurable set A in ∂Γ.

Theorem 4.2. Let Γ be a finitely generated non-elementary hyperbolic group and RWΓ,µ be a
symmetric, irreducible random walk on Γ such that (Γ, dG) is hyperbolic and quasi-isometric
to (Γ, d) where d is the word metric wrt some finite generating set. Equip ∂Γ with a visual
metric dG,ε wrt to the Green metric for ε > 0 small enough. Then the hitting measure ν is
Ahlfors-regular of dimension 1/ε and in fact, the volume entropy of Γ with respect to the
Green metric is equal to 1.
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Proposition 4.2. Let Γ be a finitely generated non-elementary hyperbolic group w ∈ Γ.
Let d be the word metric on Γ wrt to some finite generating set. Let RWΓ,µ be a symmetic,
irreducible random walk on Γ such that (Γ, dG) is hyperbolic and quasi-isometric to (Γ, d).
For each a ∈ ∂Γ, choose a quasigeodesic [w, a) in a measurable way. There exists b > 0 such
that for all D > 0 and n ∈ N>0,

P [d(Zn(w), [w,Z∞(w))) ≥ D] ≲ e−bD

Proof. Before we begin, let us note that for g, z ∈ Γ if z = gw then Z∞(z) = gZ∞(w) and
that the sequence (d(Zn(w), [w,Z∞(w)))) records the lateral deviation of the random walk
(Zn(w)) from the quasi-geodesic [w,Z∞(w)).

P [d(Zn(w), [w,Z∞(w))) ≥ D] =
∑
z∈Γ

P [d(Zn(w), [w,Z∞(w))) ≥ D,Zn(w) = z]

=
∑
z∈Γ

P [d(z, [w,Z−1
n Z∞(z))) ≥ D,Zn(w) = z]

=
∑
z∈Γ

P [d(z, [w,Z−1
n Z∞(z))) ≥ D]P [Zn(w) = z]

=
∑
z∈Γ

P [d(z, [w,Z∞(z))) ≥ D]P [Zn(w) = z]

where additionally we have used the observation that Z−1
n Z∞ and Zn are independent random

variables and that Z−1
n Z∞

d
= Z∞. Now fix z ∈ Γ and consider a sample path Zn(w) such

that d(z, [w,Z∞(z))) ≥ D. In particular, we have d(z, w) ≥ D. Let x be the midpoint of a
geodesic segment [z, w]. Since the triangle (x, z, Z∞(z)) is δ-thin (for some δ ≥ 0), we have
(z|Z∞(z))x ≤ δ. That is, Z∞(z) ∈ Sz(x,R) where R > δ. So we have:

P [d(z, [w,Z∞(z))) ≥ D] ≤ P [Z∞(z) ∈ Sz(x,R)] = νz(Sz(x,R))

Now since (Γ, dG) is non-elementary hyperbolic, using Theorem 4.2 and the Shadow lemma
we have νz(Sz(x,R)) ≤ e−dG(z,x) where R is a universal constant. Using the quasi-isometry
between (Γ, dG) and (Γ, d), we get P [d(z, [w,Z∞(z))) ≥ D] ≲ e−2bd(z,x) ≤ e−bD for some
constant b > 0. Therefore:

P [d(Zn(w), [w,Z∞(w))) ≥ D] =
∑
z∈Γ

P [d(z, [w,Z∞(z))) ≥ D]P [Zn(w) = z]

≲
∑
z∈Γ

e−bDP [Zn(w) = z] = e−bD

■

Corollary 4.2.1. Under the assumptions of the proposition above, we have:

lim sup
n→∞

d(Zn(w), [w,Z∞(w)))

log n
< ∞ a.s.

Proof. Note that P [d(Zn(w), [w,Z∞(w))) ≥ 2
b
log n] ≲ 1/n2. Now the claim follows using the

Borel-Cantelli lemma. ■



20 RITWIK CHAKRABORTY

5. Dimension of the harmonic measure on the boundary of a hyperbolic
metric space

The dimension of a measure is defined to be the infimum of the Hausdorff dimensions
of sets of positive meausure. We first define the shadow of a ball in an alternative, perhaps
more blatantly geometric way. Essentially, our definition of the shadow of a ball B(x,R) in a
hyperbolic metric space X seen from a point w, suggests that it almost comprises of those
points a ∈ ∂X such that some quasi-geodesic [w, a) intersects B(x,R). We make this precise
as follows:

Definition 5.1. Let (X, d) be a hyperbolic metric space equipped with a quasiruling structure
G. We say that G is a visual quasiruling structure if any pair of points in X ∪ ∂X can
be joined by a quasiruler in G. In this case, we define the G-shadow of a ball of radius R
centered at x ∈ X by:

S(x,R;G) = {a ∈ ∂X | ∃ a quasiruler [w, a) ∈ G, [w, a) ∩B(x,R) ̸= ∅}

Next we observe that G-shadows are almost shadows.

Proposition 5.1. Let (X, d) be a hyperbolic space equipped with a visual quasiruling structure
G. There exist constants C,R0 > 0 such that for all R > R0, a ∈ ∂X, w ∈ X, quasiruler
[w, a) ∈ G and x ∈ [w, a), we have:

S(x,R− C;G) ⊂ Sw(x,R) ⊂ S(x,R + C;G)

Proposition 5.2 (Doubling property of harmonic measures). Let Γ be a finitely generated,
non-elementary hyperbolic group. Let RWΓ,µ be a symmetric, irreducible random walk such
that:

• (Γ, dG) is hyperbolic and the identity map (Γ, dG)
idΓ→ (Γ, d) is a quasi-isometry, where

d is the word metric wrt some finite generating set. We will refer to the corresponding
cayley (metric) graph by (X, d).

Let ν be the harmonic measure on ∂X seen from e and equip ∂X with a visual metric of
parameter ε > 0. ν has the doubling property, i.e there exists a constant C.0 such that if
B is any visual ball and 2B is the concentric visual ball having twice the radius as B, then
ν(2B) ≤ Cν(B).

Proposition 5.3. Let Γ be a finitely generated, non-elementary hyperbolic group. Let RWΓ,µ

be a symmetric, irreducible random walk such that:

• (Γ, dG) is hyperbolic and the identity map (Γ, dG)
idΓ→ (Γ, d) is a quasi-isometry, where

d is the word metric wrt some finite generating set. We will refer to the corresponding
cayley (metric) graph by (X, d).

• RWΓ,µ has finite moment for the Green metric, i.e.

E[dG(e, Z1)] < ∞
Let ν be the harmonic measure on ∂X seen from e and equip ∂X with a visual metric of
parameter ε > 0. For ν-a.e. point a ∈ ∂X, we have:

lim
r→∞

log ν(Bε(a, r))

log r
=

lG
εl

(∗)

where lG is the Green speed, while l is the drift.
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We give a heuristic proof first:

• Note that (∗) is equivalent to showing that for P -a.e. ω ∈ Ω, we have:

lim
r→∞

log ν(Bε(Z∞(ω), r))

log r
=

lG
εl

We attempt to compute the limit above along the sequence rn = e−εnl.
• Now pick any ω ∈ Ω such that limn→∞ d(e, Zn(ω))/n = l. So for large enough n,
our random walk is almost a distance nl away from home: d(e, Zn(ω)) ≈ nl. Now
we know that visual balls are almost shadows of balls. Together with the doubling
property of the harmonic measure we get:

ν(Bε(Z∞(ω), e−εd(e,Zn(ω)))) ≍ ν(S(Zn(ω), R))

where R is some large enough fixed constant. Using the Shadow lemma and the fact
that the identity map between (Γ, d) and (Γ, dG) is a quasi-isometry, we get:

ν(Bε(Z∞(ω), e−εnl)) ≍ e−dG(Zn(ω),e)

• Therefore:

lim
r→∞

log ν(Bε(Z∞(ω), r))

log r
= lim

n→∞

dG(Zn(ω), e)

nεl
=

lG
εl

Now we begin the formal proof:

Proof. Note that Γ is sitting inside X, as a set: namely each group element is sitting at the
corresponding vertex in the Cayley graph X. And this inclusion is a quasi-isometry when Γ
is equipped with either the word metric or the Green metric.

(Γ, dG) (X, d)

(Γ, dw)

idΓ

Let G be the set of all geodesics (rays, lines and segments) in X. G induces a visual quasiruling
structure G ′ on (Γ, dG). For any x ∈ Γ and R > 0 the sets S(x,R;G ′) and S(x,R;G) are iden-
tified under the homeomorphism induced by (Γ, dG) ↪→ (X, d) on the respective boundaries.
We claim that there exist constants C,R > 0 such that for all a ∈ ∂X, for all x ∈ [e, a) ∈ G:

Bε(a,
1

C
e−εd(e,x)) ⊂ S(x,R;G) ⊂ Bε(a, Ce−εd(e,x))(1)

ν(S(x,R;G)) ≍ e−dG(e,x)(2)

Here (1) is deduced from Proposition 4.1 for (X, d). While (2) follows from Proposition 4.1
for (Γ, dG,G ′) together with the underlined observation above and the shadow lemma, i.e.
Lemma 4.1 for (Γ, dG). In order to use the shadow lemma, we have also used the fact that ν
is a quasi-conformal measure on ∂X and that the volume entropy of Γ wrt the Green metric
is equal to 1 (Theorem 4.2).

Next, observe that (1) and the doubling property of ν wrt to the visual metric dε on
∂X gives:

∀a ∈ ∂X,∀x ∈ [e, a) ∈ G, ν(Bε(a, e
−εd(e,x))) ≍ ν(S(x,R;G))(3)
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We now implement Kaimanovich’s theorem 4.1 for (X, d).

• Firstly, we can assign a geodesic ray [e, a) ∈ G to each point a ∈ ∂X in a measurable
way.

• For each n, there exists a measurable “projection” map πn : ∂X → X such that
πn(a) ∈ [e, a) for all a ∈ ∂X and:

for a.e. ω ∈ Ω, lim
n→∞

d(Zn(ω), πn(Z∞(ω)))

n
= 0(4)

Since (Γ, dG) ↪→ (X, d) is a quasi-isometry, we also have:

for a.e. ω ∈ Ω, lim
n→∞

dG(Zn(ω), πn(Z∞(ω)))

n
= 0(5)

Also recall, that E[d(e, Z1)], E[dG(e, Z1)] < ∞ implies that:

for a.e. ω ∈ Ω, lim
n→∞

d(e, Zn(ω))

n
= l, lim

n→∞

dG(e, Zn(ω))

n
= lG(6)

Fix η > 0. Using (4) − (6) let Ω′ ⊂ Ω be a full measure set such that for all ω ∈ Ω′ there
exists n0 = n0(ω) ∈ N such that for n ≥ n0, we have:

|d(e, Zn(ω)− nl)| ≤ ηn d(Zn(ω), πn(Z∞(ω))) ≤ ηn

|dG(e, Zn(ω)− nlG)| ≤ ηn dG(Zn(ω), πn(Z∞(ω))) ≤ ηn

and therefore, in particular:

|d(e, πn(Z∞(ω)))− nl| ≤ 2ηn |dG(e, πn(Z∞(ω)))− nlG| ≤ 2ηn(7)

Define rn = e−εd(e,πn(Z∞(ω))) and set a = Z∞(ω), x = πn(Z∞(ω)) in (2)− (3) to obtain:

ν(Bε(Z∞(ω), rn)) ≍ e−dG(e,πn(Z∞(ω)))

Together with (7):

∀ω ∈ Ω′∃n0 = n0(ω) ∈ N, for all n ≥ n0,

∣∣∣∣ log ν(Bε(Z∞(ω), rn))

log rn
− lG

εl

∣∣∣∣ ≲ η(8)

Claim. The fact that the harmonic measure ν has the doubling property on (∂X, dε) implies
that ν is α-homogeneous for some α > 0, i.e

∃C > 0 such that for any 0 < R1 < R2 < diam(∂X, dε),
ν(Bε(a,R2))

ν(Bε(a,R1))
≤ C

(
R2

R1

)α

(9)

Taking log on both sides of (9), setting a = Z∞(ω), R1 = rn and R2 = e−εnl we have:

| log ν(Bε(Z∞(ω), e−εnl))− log ν(Bε(Z∞(ω), rn)| ≤ 2αεηn+O(1)

and so

∣∣∣∣ log ν(Bε(Z∞(ω), e−εnl))

log e−εnl
− log ν(Bε(Z∞(ω), rn)

log rn

∣∣∣∣ ≲ η +O(1/n)

where ω ∈ Ω′, n ≥ n0(ω). Therefore:

lim sup
n→∞

∣∣∣∣ log ν(Bε(Z∞(ω), e−εnl))

log e−εnl
− log ν(Bε(Z∞(ω), rn)

log rn

∣∣∣∣ ≲ η

as η > 0 was arbitrary, lim sup
n→∞

∣∣∣∣ log ν(Bε(Z∞(ω), e−εnl))

log e−εnl
− log ν(Bε(Z∞(ω), rn)

log rn

∣∣∣∣ = 0
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Finally, lim
r→0

log ν(Bε(Z∞(ω), r))

log r
= lim

n→∞

log ν(Bε(Z∞(ω), e−εnl))

loge−εnl

= lim
n→∞

log ν(Bε(Z∞(ω), rn))

rn

=
lG
εl

(using (8)) for all ω ∈ Ω′

■

Corollary 5.0.1. ν has dimension lG/εl.

6. The Poisson boundary

Here we take another step towards understanding the asymptotic behaviour of a random
walk. To begin with, consider a transient random walk RWΓ,µ on a countable discrete group
Γ where the law of the steps is given by the Borel probability measure µ. Since the random
walk is transient, almost every sample path (xn)n≥0, escapes to infinity. More precisely, define
the positive hitting probabilities: ρkx,A = P [τ kx,A < ∞] and ρkxy = P [τ kxy < ∞] for all k ≥ 0,

x, y ∈ Γ, A ⊂ Γ. We write ρ1x,A = ρx,A and ρ1xy = ρxy. Then:

Claim. ∀x, y ∈ Γ we have ρkxy = ρxyρ
k−1
yy .

Now let K be any finite subset of Γ. Let Kn = [τnx,K < ∞] be the measurable set of
sample paths that visit K at least n times. We wish to show that P [Kc

n eventually] = 1 that
is, P -almost surely, every sequence leaves the set K. It follows from the claim above that
ρnx,K ≤ |K|ρn−1

K where ρK = min{ρyy | y ∈ K}. The random walk is transient so ρK < 1 and
an application of Borel-Cantelli lemma gives us P [Kn i.o.] = 0. So P [Kc

n eventually] = 1.

Now that we have established that almost every sample path (xn)n≥0, escapes to infin-
ity, we want to ask: where does the random walk escape to? Well, ideally to a
“boundary”. And if there is none, we must construct it. This leads us to the Poisson boundary.
There are multiple levels in which this question can be answered. We will look at the following:

(a) For the random walk RWΓ,µ we will quickly define the Poisson boundary with the
help of the stationary σ-algebra.

(b) When Γ can be equipped with a metric so that it is a complete separable metric
space, we will try to construct the Poisson boundary as a so-called compactification
boundary.

(c) In this most general case, we will look at irreducible Markov chains on countable state
space and define the Poisson boundary.

6.1. The Poisson boundary of a random walk on a countable group.

Consider a random walk on Γ, RWΓ,µ. We equip the space of sample paths GN with the prod-
uct σ-algebra, generated by cylinder sets. Recall that we have the increment space Ω = ΓN>0

equipped with the product σ-algebra and the product probability measure P = µ⊗N>0 . We
have the map A : Γ × Ω → ΓN defined by A(g, ω) = (ωn)≥1 = (Zn(ω))n≥0. Thus, given a
probability measure θ on G, the random walk starting with θ as the initial distribution has
law Pθ = A∗(θ ⊗ P ). Px = Pδx is the law of the random walk starting at x ∈ Γ. Consider
the time shift map T : ΓN → ΓN mapping (ωn)n≥0 to (ωn+1)n≥0. T is a measure-preserving
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map on (ΓN,BΓN , Po) where o is any fixed base-point. Let I = {A ∈ BΓN | T−1A = A} be the
σ-algebra of T -invariant measurable sets.

• Since (ΓN,BΓN , Po) is a standard probability space, there exists a unique (upto mea-
surable isomorphism) measurable space (∂µΓ,A) and a measurable map b : ΓN → ∂µΓ
such that b−1A = I(modPo). We claim that ∂µΓ is in fact the space of ergodic
components.

• Since (ΓN,BΓN , Po) is a standard probability space, the Ergodic decomposition theorem
gives us the following:

– A disjoint collection P of measurable subsets of ΓN such that ∪P∈PP has full
measure.

– Equip P with the quotient σ-algebra. We have a collection of probability measures
(µP )p∈P and a probability measure µ̂ on P such that for all A ∈ BΓN the map
P 7→ µP (A) is measurable and

∀A ∈ BΓN , Po(A) =

∫
P
µP (A)dµ̂(P )

and each µP is T -invariant and ergodic.
– For µ̂-a.e. P ∈ P , µP (P ) = 1.

In the above, we can in fact choose each P ∈ P to be T -invariant. We can check that
P generates the σ-algebra I mod Po.

• Thus we can take ∂µΓ to be the measurable space of ergodic components and b to be
the projection map (defined almost everwhere). Note that by construction, b = b ◦ T
almost everywhere.

We call ∂µΓ the Poisson boundary of Γ for the random walk RWΓ,µ. It comes equipped with
a family of harmonic measures (νx)x∈Γ where νx = b∗Px. Note that Px =

∑
y∈Γ µ(x

−1y)Py

and so νx =
∑

y∈Γ µ(x
−1y)νy, for all x ∈ Γ. While the Poisson boundary as defined above,

does seem to be record the limiting futures of sample paths, it in fact also solves the Dirichlet
problem for harmonic functions defined wrt to transition probabilities p(x, y) = µ(x−1y) on
Γ.

6.2. The Poisson formula and Poisson boundary for Markov chains.

Let us recall the Dirichlet problem for the unit disc D. Suppose we are given a contin-
uous function on the boundary ∂D of the unit disc. Can we extend it continuously to a
harmonic function on D? This is the Dirichlet problem, and it is solvable for the unit disc:
For every f̂ ∈ C(∂D), there exists a unique function f ∈ C(D̄) such that f

∣∣
∂D = f̂ and f

∣∣
D is

harmonic. So, for each point x ∈ D we have a positive linear functional on C(∂D) given by

f̂ 7→ f(x). By Riesz-Markov representation theorem, there is a Radon measure νx on ∂D such

that f(x) =
∫
∂D f̂(y)dνx(y). This is essentially the Poisson formula. x 7→ νx embeds D into

M1(∂D), the space of Borel probability measures on ∂D. Let us make some observations:

• For every conformal automorphism g ∈ Aut(D), g∗νx = νg(x).
• Since f is harmonic, it follows that (νx)x∈D is a family of harmonic measures.
• In particular, ν0 is invariant under circle rotations so it must be the Lebesgue measure
on ∂D.
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• In fact:

f(x) =

∫
∂D

f̂(y)dνx(y)

=

∫
∂D

f̂(y)(dνx/dνo)(y)dν0(y)

=

∫ 2π

0

f̂(eiθ)Π(x, y)dθ/2π

where Π(x, y) = (1− |x|2)/|y− x|2 is the so-called Poisson kernel. This Poisson kernel
has a probabilistic interpretation. dνx is the hitting measure on ∂D for Brownian
motion initiated at x.

• On the other hand, given a bounded harmonic function u defined on D, it extends
continuously to D̄. One simply takes radial limits: u(ξ) = limr→1− u(rξ) where ξ ∈ ∂D.

• Moreover, since limx→ξ dνx = δξ, we get a linear isometric isomorphism C(∂D) →
H∞(D) (f̂ 7→ u as above) between the Banach spaces of continuous functions on ∂D
and that of boundaed harmonic functions on D.

Let us now look at a discrete analogue of this phenomena. We consider a Markov chain on a
countable state space V with transition matrix P = (p(x, y))x,y∈V . Consider the sequence
space V N equipped with the product σ-algebra. Let Xn : V N → V be the projection onto nth

coordinate and let Pθ denote the law of the Markov chain starting with initial distribution θ.
That is:

• Let P
(0)
θ = θ. And for n ≥ 1, define the probability measures P

(n)
θ on V n as follows:

For subsets (Bi)0≤i≤n of V ,

P
(n)
θ (Xj ∈ Bj; 0 ≤ j ≤ n) =

∫
B0

dθ(x0)

∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)

(P
(n)
θ ) are consistent as marginals and glue to give the probability measure Pθ on V N.

• So that (Xn) is a Markov chain with transition matrix P , that is, Pθ(Xn+1 = y |
X0, . . . , Xn) = p(Xn, y) for all y ∈ V .

• Note that just as in the previous subsection, we have the time shift map T : V N → V N.
Thus we also have the stationary σ-algebra I of T -invariant Borel sets. An I-
measurable function will be called a stationary function. Note that a Borel measurable
function is stationary iff f = f ◦ T .

The transition matrix defines a natural averaging operator, the so-called Markov operator.
Given a function f : V → R, define Pf(x) =

∑
y∈V p(x, y)f(y). f is said to be P -harmonic

if Pf = f . Now that we have harmonic functions on V , can we hope to find a “boundary”
and a corresponding Poisson formula for the P -harmonic functions on V ?

• Let L∞(V N, I, Po) be the Banach space of Po-equivalence classes of bounded stationary
functions on V N. Recall that f, g : V → R are Po-equivalent if Po[f ̸= g] = 0.

• Let H∞(V, P ) be the Banach space of bounded P -harmonic functions on V .

Proposition 6.1 (Poisson Formula I). Suppose (V, P ) is irreducible, then we have a linear
isometric isomorphism Φ : L∞(V N, I, Po) → H∞(V, P ) mapping f to Uf for each bounded
stationary function f , where Uf (x) = Ex[f(X0, X1, . . . )] for all x ∈ V .

Proof.
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• For every bounded stationary function f , Uf is bounded and P -harmonic Since f is
bounded, we have ||Uf ||∞ ≤ ||f ||∞, so Uf is bounded. Once we’ve showed that Φ is
well-defined, this will also show that it is a contraction. Next, observe that:

Ex[f ] = Ex[Ex[f | X0]]

= Ex[Ex[f ◦ T | X0]] (f = f ◦ T )
= Ex[EX1 [f ]] (Markov property)

=
∑
y∈V

p(x, y)Ey[f ]

• Φ is well-defined Take two bounded stationary functions f, g which are Po-equivalent.
We wish to show that Uf = Ug. Let x ∈ V .

∀x ∈ V, Uf (x)− Ug(x) = Ex[f − g] ≤ MPx[f ̸= g]

where M > 0 is some large constant. But Px is absolutely continuous wrt Po: this
follows the fact that for some large enough n, pn(o, x) > 0 and Po =

∑
y∈V pn(o, y)Py

so Po ≥ pn(o, x)Px. Therefore Px[f ̸= g] = 0. As x was arbitrary, Uf = Ug.
• Constructing the inverse Define Ψ : H∞(V, P ) → L∞(V N, I, Po) by Ψ(u) = Fu where
Fu((xn)n≥0) = lim supn→∞ u(xn). Note that Ψ is clearly well-defined, linear and a
contraction. We now check that Ψ ◦Φ = idL∞(V N,I,Po) and Φ ◦Ψ = idH∞(V,P ) and this
will complete the proof.

Ψ ◦ Φ = idL∞(V N,I,Po): Let f be any bounded stationary function on V . We need
to show that FUf

is Po-equivalent to f . Let us evaluate FUf
.

FUf
((Xn)) = lim sup

n→∞
Uf (Xn)

= lim sup
n→∞

EXn [f ]

= lim sup
n→∞

Eo[f ◦ T n|X0, . . . , Xn] (Markov Property)

= lim sup
n→∞

Eo[f(X0, X1, . . . )|X0, . . . , Xn] (f is stationary)

= lim
n→∞

Eo[f(X0, X1, . . . )|X0, . . . , Xn] a.s. (Martingale convergence theorem)

= f(X0, X1, . . . ) a.s.

Φ ◦Ψ = idH∞(V,P ): Let u be any bounded harmonic function. We wish to show that
UFu = u. Let us evaluate UFu at a point x ∈ V .

UFu(x) = Ex[Fu(X0, X1, . . . )]

= Ex[lim sup
n→∞

u(Xn)]

Since u is harmonic, (u(Xn)) is a martingale. So by the Martingale convergence
theorem, (u(Xn)) converges a.s. and in L1. So UFu(x) = limn→∞Ex[u(Xn)]. But
Ex[u(Xn)] =

∑
y∈V Px[Xn = y]u(y) = u(x) as u is harmonic.

■

Proposition 6.1 suggests that the space (V N, I) is a candidate for the boundary we were
looking for. However, it is much too big. For example, for a simple random walk on a regular
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tree of degree at least 3, we see that we would like to identify two sample paths that converge
to the same end.

Definition 6.1. A measure-theoretic boundary of an irreducible Markov chain on a
countable state space V , transition matrix P , is a measurable space (B,FB) together with a
measurable map b : (V N,BV N) → (B,FB) such that:

• b is T -invariant: b = b ◦ T .
• FB is countably generated and separates points of B: There is a sequence of measurable
sets (An) in FB such that FB = σ(A1, A2, . . . ) and for every distinct pair x, y ∈ B,
1An(x) ̸= 1An(y) for some n.

We equip this boundary with a family of harmonic measures: νx = b∗(Px) for each x ∈ V .
Irreducibilty implies that these measures are absolutely continuous wrt to each other and
the Radon-Nikodym derivatives dνx/dνo(y) serve as Poisson kernels, just as in the classical
Poisson formula we discussed above.

Remark. Note that the random walk RWΓ,µ on Γ is a Markov chain with state space
V = Γ and p(x, y) = µ(x−1y) for all x, y ∈ Γ. The Poisson boundary (∂µΓ,A, b) is a
measure-theoretic boundary.

Once we have a measure-theoretic boundary, the harmonic measures yield one half of
solution to the Dirichlet problem.

Proposition 6.2. Suppose that (B,FB, b) is a boundary for the irreducible Markov chain
(V, P ). Given any bounded measurable function φ on B, we have a “continuous” extension u
of φ to V ∪B: Define u : V → R by u(x) =

∫
B
φ(θ)dνx(θ). We have:

(i) u is a bounded harmonic function.
(ii) limn→∞ u(Xn) = φ(b((Xn)n≥0)) Po-a.s. for all o ∈ V .

Proof. Note that f := φ ◦ b ∈ L∞(V N, I, Po). Following the notation introduced in proof of
proposition 6.1:

Uf (x) = Ex[f ] =

∫
V N

φ ◦ bdPx

=

∫
B

φdνx = u(x)

So limn→∞ u(Xn) = limn→∞ Uf (Xn). But using Levy’s 0− 1 law, we have limn→∞ Uf (Xn) =
f((Xn)n≥0) = φ(b((Xn)n≥0)). ■

We would like to define a measure-theoretic boundary to be a Poisson boundary if it solves
the Dirichlet problem entirely. In view of that:

Theorem 6.1 (Poisson Boundary). Let (B,FB, b) be a boundary of the irreducible Markov
chain (V, P ), equipped with the family of harmonic measures (νx)x∈V . The following are
equivalent:

(a) Poisson representation: For all u ∈ H∞(V, P ), there exists a bounded measurable
function ũ : B → R such that:

∀x ∈ V, u(x) =

∫
B

ũ(θ)dνx(θ)
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(b) Harmonic limits/boundary convergence: For all u ∈ H∞(V, P ) there exists a
bounded measurable function ũ : B → R such that limn→∞ u(Xn) = ũ(b((Xn)n≥0)) a.s.

(c) Ergodic components: b−1FB = I(mod Po).
(d) Maximality: If (B′,F ′

B, b
′) is a boundary of (V, P ), then (B,FB, b) factors through

(B′,F ′
B, b

′), i.e. there exists a measurable map π : B → B′ such that: b′ = π ◦ b Po-a.s.

Proof. We refer the reader to [LP16] for a proof. ■

Remark. Observe that the Poisson boundary ∂µΓ defined for RWΓ,µ satisfies (c) above.

6.3. Boundary Convergence and Compactification Boundaries.

The state space of our irreducible Markov chain, which is the background on which random
movement occurs, might come equipped with natural topological/geometric structures pos-
sibly along with some group action, and thus some associated boundaries. On that note,
suppose that V is a separable metric space.

Definition 6.2. A compactification of V is a compact, hausdorff, second countable metric
space V̂ together with an embedding i : V ↪→ V̂ such that i(V ) is open and dense in V̂ .

Remark. Observe that ∂V = V̂ − i(v) is compact and that the metric on V extends

continuously to V̂ .

• For any x̂, ŷ ∈ V̂ if (xn), (yn) are any sequences in V that (i(xn)), (i(yn)) converge to
x̂, ŷ respectively, then simply define d(x̂, ŷ) = limn→∞ d(xn, yn). Second countability

of V̂ and the fact that i(V ) is dense in V̂ imply that (xn), (yn) are Cauchy sequences
in V . Existence of the limit now follows because d is uniformly continuous.

Let Ω∞ = {ω = (xn)n≥0 ∈ V N | Z∞(ω) = limn→∞ Zn(ω) ∈ ∂V exists in the topology of V̂ }.
We say that there is boundary convergence if ∀x ∈ V, Px(Ω∞) = 1.

Remark. If there is boundary convergence, Z∞ is measurable wrt to the Borel σ-algebra,
B∂V of ∂V . Thus for each x ∈ X, we have the hitting measures νx = Px ◦ Z−1

∞ . Note
that (νx)x∈V is a family of harmonic measures. Together with irreducibility of the Markov
chain, this implies that (νx)x∈V are mutually absolutely continuous. Thus if φ : ∂V → R is
νx-integrable, then it is νy-integrable for all y ∈ V . As we saw in the previous section, this
solves half of the Dirichlet problem: for all φ ∈ C(∂V ), ∀x ∈ V, uφ(x) =

∫
∂V

φdνx defines a
harmonic function on V . But is this extension continuous?

Theorem 6.2. The Dirichlet problem wrt to P and V̂ is solvable iff:

(a) Boundary convergence: (Zn) converges to the boundary.
(b) ∀ξ ∈ ∂V , limx→ξ νx = δξ weakly.

Proof. Observe that (a) and (b) clearly imply that the for all for all φ ∈ C(∂V ), the harmonic
function uφ is a continuous extension of φ. So now, assume that the Dirichlet problem is

solvable wrt to P and V̂ .

• For every φ ∈ C(∂V ) let uφ denote the (restriction to V of the) (unique) continuous

harmonic extension to V̂ . Then the map defined by evaluation at x ∈ V , evx :
C(∂V ) → R defined by evx(φ) = uφ(x):

– is linear.
– evx(1) = 1 and for φ ≥ 0, evx(φ) ≥ 0.
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– ||evx|| = 1 (follows from the maximum principle)
Thus by the Riesz-Markov theorem, there exists a unique Radon measure νx on ∂V
such that evx(φ) =

∫
∂V

φdνx for all x ∈ V , φ ∈ C(∂V ).
• ∀φ ∈ C(∂V )∀ξ ∈ ∂V , limx→ξ uφ(x) = φ(ξ), i.e limx→ξ νx = δξ. This proves (b).
• Next, we need to show that ∀x ∈ V, Px(Ω∞) = 1. As ∂V is compact, Hausdorff and
second countable, C(∂V ) (equipped with the sup norm) is separable. Let (φk) be a
countable dense subset of C(∂V ). For each k, the sequence (uφk

(Zn)) is a bounded
martingale, and so by the martingale convergence theorem, converges Px-a.s. for all
x ∈ V .

• Noting that the Markov chain is transient let

Ω′ = {ω = (xn)n≥0 ∈ V N | Zn(ω) → ∞ and (uφk
(Zn(ω))) converges}

Then Px(Ω
′) = 1 for all x ∈ V .

• Let ω ∈ Ω′. By the Riesz-Markov theorem we get a unique Radon measure ν̃ω such
that limn→∞ νZn(ω) = ν̃ω. Since V̂ is compact the sequence Zn(ω) has at least one
limit point. Since Zn(ω) → ∞, all limit points belong to ∂V . If (ni) is a subsequence
such that Zni

(ω) → ξ ∈ ∂V as i → ∞, then (b) implies that limi→∞ νZni (ω)
= δξ = ν̃ω.

In fact, this observation also shows that if η is any other limit points of (Zn(ω)), then
δξ = ν̃ω = δη i.e. ξ = η. This proves (a), since Ω′ ⊆ Ω∞.

• It remains to check that for each x ∈ V , νx is the hitting measure for the Markov
chain starting at x. It suffices to show that:

∀x ∈ V ∀φ ∈ C(∂V ), Ex[φ ◦ Z∞] =

∫
∂V

φdνx

Observe that φ ◦ Z∞ = limn→∞ uφ(Zn) Px-a.e. for all x ∈ V . Now by the dominated
convergence theorem,

Ex[φ ◦ Z∞] = lim
n→∞

Ex[uφ(x)]

= lim
n→∞

P nuφ(x)

= lim
n→∞

uφ(x) = uφ(x)

where P nuφ(x) = uφ(x) since uφ is harmonic.

■

This leads us to define:

Definition 6.3. A measure-theoretic boundary (B,FB, b) is called a compactification
boundary if:

• There is a compactification V̂ of V such that B = ∂V and FB = B∂V .
• (Zn) converges to the boundary.
• b
∣∣
Ω∞

= Z∞ and on V N − Ω∞, we simply require b to be T -invariant and measurable

(like for example, it could take a constant value).

Now suppose Γ is a group of automorphisms of (V, P ) which also acts on B such that b is
Γ-equivariant (Here Γ acts diagonally on V N).

• (B,FB, b) is said to be a Γ-boundary if Γ acts FB-measurably on B.
• If (B,FB, b) is a compactification boundary and Γ acts continuously on B, the it is
said to be a compactification Γ-boundary.
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The main application of Theorem 6.2 lies in the fact that if we can show that the Dirichlet
problem is solvable, then the 6.2 together with 6.1 realizes the Poisson boundary as a
compactification boundary.

6.4. Compactifications with hyperbolic properties.

Let (X, d) be a proper, separable metric space, and Γ be a group of isometries of (X, d). Let

X̂ be a compactification of X.

Definition 6.4. X̂ is said to be a projective compactification if:

• For all sequences (xn), (yn) in X and for all ξ ∈ ∂X, whenever xn → ξ and
supn d(xn, yn) < ∞ we have yn → ξ.

X̂ is said to be a contractive Γ-compactification if:

• X̂ is projective
• Every γ ∈ Γ extends to a self homeomorphism of X̂.
• For every sequence (γn) in Γ, for some x ∈ X and for all ξ, η ∈ ∂X, if γnx → ξ and

γ−1
n x → η then γnw → ξ uniformly for all w ∈ X̂ outside of every neighbourhood of

η.

Remark.

• Note that since Γ acts by isometries, and due to projectivity, the convergence criterion
for a contractive Γ-compactification does not depend on the choice of x ∈ X.

• The convergence criterion can be stated equivalently as follows: for any neigbourhoods
U, V of ξ, η respectively, there is a non-negative integer N = N(U, V ) such that for

all n ≥ N , we have γn(X̂ − V ) ⊆ U .

Theorem 6.3. Let X be a countably infinite locally finite graph and consider an irreducible,
transient Markov chain (X,P ). Suppose Γ is a closed transitive subgroup of Aut(X,P ). If X̂
is a contractive Γ-compactification of X such that:

• |∂X| = ∞
• Γ does not fix any point on ∂X

Then, the Dirichlet problem wrt to P and X̂ is solvable.

We will now specialize to the case of random walks on countable groups.

6.5. Proximal actions and µ-boundaries.

In this section G will be a locally compact, second countable group, (M,d) will denote
a compact metric space on which G acts by isometries, i.e. a compact metric G-space and
Prob(M) will denote the space of Borel probability measures on M . δM := {δx | x ∈ M}

Definition 6.5.

• M is called a minimal G-space if it does not contain a proper closed G-invariant
subspace.

• M is called a proximal G-space if for all x, y ∈ M , there is a sequence (gn) in G
such that d(gnx, gny) → 0. Since M is compact, we can equivalently say that for
all x, y ∈ M there is a point z = z(x, y) ∈ M and a sequence (gn) in G such that
limn→∞ gnx = z = limn→∞ gny.
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• M is called a strongly proximal G-space if for all µ ∈ Prob(M), there exists a
sequence (gn) in G and a point x ∈ M such that gnµ → δx.

• M is called a boundary for the group G if it is a minimal, strongly proximal G-space.
• Suppose µ ∈ Prob(G) and ν ∈ Prob(M) is a µ-stationary measure, i.e. µ ∗ ν = ν.
Then (M, ν) is called a (G, µ)-space.

• A (G, µ)-space (M, ν) is called a µ-boundary if for all almost all sequences (gn)n≥1 ∈
GN>0 , limn→∞ g1 . . . gnν ∈ δM . Equivalently: If (Xn) is an i.i.d. sequence of G-valued
random variables with law µ, then a.s. e,X1ν, . . . , X1 . . . Xnν converges to some point
measure.

• Let µ ∈ Prob(G). M is called a µ-proximal G-space if for every µ-stationary measure
ν ∈ Prob(M), the (G, µ)-space (M, ν) is a µ-boundary.

• M is called a mean proximal G-space if it is µ-proximal for every µ ∈ Prob(G) with
supp(µ) = G.

Proposition 6.3. Let µ ∈ Prob(G) and let (M, ν) be a (G, µ)-space. Set Ω = GN>0 equipped
with the product σ-algebra and product measure P = µ⊗N>0. Then for P -almost every sequence
(gn)n≥0 ∈ Ω, the limit:

lim
n→∞

g1g2 . . . gnν exists.

Proof. Let Xn : Ω → G denote the projection onto nth coordinate. Then (Xn)n≥0 is an
i.i.d. sequence of random variables with law µ. Define another G-valued sequence of random
variables by: Z0 = e Zn+1 = ZnXn+1 for n ≥ 0. The law of Zn is µn := µ∗n. Consider any
f ∈ C(M). Consider the random variables: Yn = EZnν [f ]. Note that ||Yn||1 ≤ ||f ||sup and
that (Yn) is a martingale wrt the filtration (σ(X1, . . . , Xn)). This follows from the following
computation:

µ ∗ ν = ν =⇒ Eν [f ] =

∫
G

Egν [f ]dµ(g)

So EZnν [f ] = Eν [f ◦ Zn]

=

∫
G

Egν [f ◦ Zn]dµ(g)

=

∫
G

EZngνdµ(g)

i.e Yn = EP [Yn+1 | X1, . . . , Xn]

Thus, by the Martingale convergence theorem, Yn converges P -a.s. Now note that M is a
separable metric space, hence C(M) is separable. Thus we may now conclude that P -a.s. the
sequence (Znν) converges. ■

6.6. Kaimanovich’s Strip Convergence.

Let G be a countable group. Following Kaimanovich, we consider a compactification
G = G ∪ ∂G of G satisfying the following conditions:

• CE: The left G-action of G on itself, extends to an action of G on G by homeomor-
phisms.

• CP: For any sequence (gn) in G, for any ξ ∈ ∂G, if gn → ξ in G, then for all x ∈ G,
gnx → ξ.
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• CS: |∂G| ≥ 3 and there is a G-equivariant Borel map S : ∂
(2)
∞ G → P(G): for every

distinct pair ξ1, ξ2 ∈ ∂G, we call S(ξ1, ξ2) a strip. S satisfies the following:
– For any distinct points ξ̄0, ξ̄1, ξ̄2 ∈ ∂G, there exist neighbourhoods: O0 ⊂open G
containing ξ̄0, Oi ⊂open ∂G containing ξ̄i for i = 1, 2 such that for all ξi ∈ Oi, we
have S(ξ1, ξ2) ∩ O0 = ϕ.

Lemma 6.1. Suppose G = G ∪ ∂G is a compactification of G satisfying (CE), (CP) and
(CS). Let ξ ∈ ∂G and (gn) be a sequence in G converging to ξ. For any non-atomic Borel
probability measure λ on ∂G, gnλ converges to δξ weakly.

Proof. To begin with, if for all b ∈ ∂G, gnb → ξ, then we’re done. This is because for any
φ ∈ C(∂G), Egnλ[φ] = Eλ[φ ◦ gn] → Eλ[φ(ξ)] = φ(ξ). So suppose there is point b1 ∈ ∂G and
gn converges to ξ′ ̸= ξ (after passing to a subsequence if necessary). We claim that for all
b ∈ ∂G− {b1}, gnb converges to ξ. If not, there exists a point b2 ∈ ∂G− {b1} such that gnb2
converges to ξ′′ ̸= ξ (again after passing to a subsequence if necessary). Now choose any
x ∈ S(b1, b2). By (CP), gnx converges to ξ. But by G-equivariance, gnx ∈ S(gnb1, gnb2), and
so ξ ∈ S(ξ′, ξ′′) which contradicts (CS). Since λ is non-atomic, it follows that gnλ converges
to δξ. ■

Remark. In fact, this shows that ∂G is a strongly proximal G-space.

Theorem 6.4. Suppose G = G ∪ ∂G is a compactification of G satisfying (CE), (CP) and
(CS) and µ is a probability measure on G such that the subgroup generated by supp(µ) is
non-elementary wrt to the compactification. Then:

(1) Then Pe-a.e. sample path ω = (xn) converges to a limit Z∞(ω) ∈ ∂G.
(2) The limit measure λ = (Z∞)∗Pe is purely non-atomic.
(3) (∂G, λ) is a µ-boundary for (G, µ) and λ is the unique µ-stationary measure on ∂G.

Proof. Since ∂G is a compact, separable metric space, so is Prob(∂G). By Schauder’s fixed
point theorem, there exists a µ-stationary measure ν on ∂G. Before we begin, maybe it useful
to recall that:

• step space= Ω = GN>0 equipped with the product σ-algebra and the product probabil-
ity measure µN>0 . If Xn denotes the projection of a step sequence onto the nth coordi-
nate, then the random walk is given by the random variables: Z1 = e, Zn+1 = ZnXn

for n ≥ 1.
• path space= Ω equipped with the product σ-algebra and Pe, the pushforward of µN>0

under the map Ω → Ω which maps each ω ∈ Ω to (Zn(ω)).
• sgr(µ) refers to the semi-group generated by the support of µ while gr(µ) referes to
the group generated by the support of µ.

Now we proceed with the proof:

• ν is non-atomic: Suppose on the contrary, that ν has atoms and let Am be the
(necessarily finite) set of atoms of maximal weight. For any b ∈ Am, by stationarity
we have:

ν(b) =
∑
g∈G

µ(g)ν(g−1b) (∗)

Because the set of probabilities associated to the atoms is a discrete set and m is
maximal among them, it follows that ν(g−1b) ∈ Am for all g ∈ supp(µ). Choice
of b ∈ Am was arbitrary, so for all g ∈ supp(µ), g−1Am ⊆ Am and as Am is finite,
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g−1Am = Am i.e. gAm = Am, so Am is fixed by gr(µ). This is not possible though,
because gr(µ) is non-elementary and hence by definition, cannot fix any subset of ∂G.

• Boundary convergence: We emphasize here that one needs sgr(µ) to be non-elementary
here in order to conclude that the random walk is transient, so that Pe-almost every
random sample path ω escapes to infinity, i.e. converges to a point say Z∞(ω) in ∂G.
Note that Z∞ is measurable wrt the Borel σ-algebra of ∂B.

• (∂G, ν) is a µ-boundary for (G, µ): ν is µ-stationary, so it follows from proposition
6.3 that for P -a.e. step sequence (gn) in G, (Zk((gn))ν) converges to a probability
measure ν(gn). In other words, for Pe-almost every sample path ω = (xn), the sequence
of probabilities (xnν) converges to a probability measure νω. Now we observe that
lemma 6.1 implies νω = δZ∞(ω).

• ν = λ: Consider a random sample path (xn). The stationarity of ν applied n times
gives:

∀A ∈ B∂G ν(A) = µn ∗ ν(A)

=
∑
g

µn(g)(gν)(A)

= EPe [(Znν)(A)]

= EPe [δZ∞(A)] = Pe(Z∞ ∈ A) = λ(A)

where in the last step we have used the fact that Znν converges to δZ∞ weakly as
n → ∞.

■

Remark. It follows that (∂G, λ) is a mean-proximal G-space.

7. The entropy criterion

In this section we will give an entropy criterion for determining when a µ-boundary is
maximal, that is, a Poisson boundary. Let us briefly recall some notation.

• Let G be a countable group equipped with a probability measure µ, this is the law
of the steps taken by the random walk. Call the product space Ω = GN as the path
space: an element of Ω is to be thought of as a sample path of the random walk.
Call the product space Ωstep = GN>0 as the step space: an element of Ωstep is to be
thought of as the full sequence of steps taken by the random walk.

• We have the walk map, walk : G× Ωstep → Ω defined by walk(x0, (xn)n≥1) = (wn)n≥0

where wn = x0 . . . xn. Equip Ωstep with the product probability measure µ⊗N>0 .
Given an initial distribution θ on G, the law of the random walk is given by Pθ =
walk∗(θ ⊗ µ⊗N>0). We set P = Pδe , the law of the random walk starting at identity.

• Note that G acts on sample paths coordinate-wise and that the this action commutes
with the time shift map T : Ω → Ω. The Poisson boundary of G is the space of
ergodic components of (Ω, P, T ) and we will denote it by ∂µG and it comes with the
projection map bnd : Ω → ∂µG. Since the G-action on Ω commutes with T , we get a
G-action on ∂µG. ν = bnd∗P is called the harmonic measure. Note that bnd is
T -invariant and therefore ν is µ-stationary.

• The standard Bernoulli shift Ustep on Ωstep (mapping (xn) to (xn+1)) induces a Bernoulli
shift U on Ω as given below:
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G× Ωstep G× Ωstep

Ω Ω

idG×Ustep

walk walk

U

Also observe that P = walke∗(µ
N>0). Ustep is measure-preserving and ergodic, therefore

so is U . T, bnd, U are related as follows:

Lemma 7.1. For P -a.e. sample path w = (wn) in Ω, we have: T (w) = w1U(w) and
bnd(w) = w1bnd(Uw).

Proof. If w = (wn)b≥0 is a sample path starting at identity then U(w)0 = e and
U(w)n = w−1

1 wn+1, so it is clear that T (w) = w1U(w). The second identity follows
from this using G-equivariance and T -invariance of bnd. Note that P is supported on
the set of sample paths starting at identity. This completes the proof. ■

• A µ-boundary, B, is a quotient of the Poisson boundary with by a G-equivariant
measurable partition. Denote by bndB the composition of bnd with the projection
of ∂µG onto B. Set λ = (bndB)∗P . λ is the push-forward of the harmonic measure
under ∂µG ↠ B.

• We will also set up some notation for cylinder sets:

Cn
g = {w ∈ Ω | wn = g}, Cn1,...,nk

g1,...,gk
= ∩k

i=1C
ni
gi
, Cg1,...,gk = ∩k

i=0C
i
gi

Now suppose we have a µ-boundary (B, λ). Our next goal is to compute/understand the
conditional probabilities: ∀γ ∈ B, P γ := P (· | bndB = γ).

Let A be a measurable subset of the µ-boundary B such that λ(A) > 0. The conditional
probability measure PA := P (· | bndB ∈ A) is uniquely determined by the values it takes on
cylinder sets Ce,g1,...,gk where k ≥ 0 and gi ∈ G for i ≤ k.

P (Ce,g1,...,gk ∩ [bndB(w) ∈ A])

= P (w0 = e, w1 = g1, . . . , wk = gk ∩ [bndB(w) ∈ A])

= P (w0 = e, w1 = g1, . . . , wk = gk ∩ [bndB ◦ T k(w) ∈ A])

= P [w0 = e, w1 = g1, . . . , wk = gk]P [bndB ◦ T k(w) ∈ A | w0 = e, w1 = g1, . . . , wk = gk]

= P [w0 = e, w1 = g1, . . . , wk = gk]Pgk [bndB(w) ∈ A]

= P [w0 = e, w1 = g1, . . . , wk = gk]gkλ(A)

where in the 4th step we have used the Markov property. Dividing both sides by λ(A) gives:

P (w0 = e, w1 = g1, . . . , wk = gk | bndB(w) ∈ A) = P [w0 = e, w1 = g1, . . . , wk = gk]
gkλ(A)

λ(A)

= P [w0 = e, w1 = g1, . . . , wk = gk]φA(gk)

where φA is the µ-harmonic function on G defined by

φA(x) =
xλ(A)

λ(A)
=

1

λ(A)

∫
A

dxλ

dλ
dλ
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Definition 7.1 (Doob transform). Let H+
1 (G, µ) denote the set of non-negative harmonic

functions f defined on sgr(µ) such that f(e) = 1. Given f ∈ H+
1 (G, µ), we can construct a

new Markov chain on sgr(µ) with transition probabilities:

∀x, y ∈ G, pf (x, y) = µ(x−1y)
f(y)

f(x)

Denote by P f , the law of the new markov chain starting at the identity.

Remark. For f ∈ H+
1 (G, µ), observe that P f(w0 = e, w1 = g1, . . . , wk = gk) = P (w0 =

e, w1 = g1, . . . , wk = gk)f(gk), thus the map f 7→ P f is affine.

Continuing our computation, define φγ to be the harmonic function on G defined by
φγ(x) =

dxλ
dλ

(γ). Then:

• φA ∈ H+
1 (G, µ), φA(·) = 1/λ(A)

∫
A
φγ(·)dλ(γ).

• P (· | bndB ∈ A) is the Doob transform of P wrt φA and:

P (· | bndB ∈ A) =
1

λ(A)

∫
A

P γ(·)dλ(γ)

which shows in particular, in view of Rokhlin’s theorem on disintegration of measures,
that:

Theorem 7.1. The probability measures P γ, corresponding to the transition probabilities
pγ(x, y) = µ(x−1y)dyλ/dxλ(γ) are the conditional probabilities constituting a disintegration
of (Ω, P ) wrt to the partition determined by the µ-boundary: (bnd−1

B (γ))γ∈B.

We now recall the notions of conditional and asymptotic entropy adapted to our setup.
Suppose X is a discrete random variable defined on the path space and F is a σ-algbera
(consisting of some Borel sets). The conditional entropy of X wrt F is defined as:

H(X | F) = E[−
∑
x

P (X = x | F) logP (X = x | F)]

We will especially be interesting in the case when F = σ(bnd) or F = σ(bndB). A probability
measure Λ on the path space is said to have asymptotic entropy h(Λ) if it satisfied the
following asymptotic equipartition property:

− 1

n
log Λ ◦Wn → h(Λ) Λ-a.s. and in L1(Λ)

where Wn is the random variable denoting the location of the random walk at time n.

Lemma 7.2. Let (B, λ, bndB) be a µ-boundary of G and H(µ) < ∞. For all k ≥ 1,

H((Wi)i≤k | bndB) = kH(W1 | bndB)

= k

[
H(µ)−

∫
log

dw1λ

dλ
(bndBw)dP (bndBw)

]
Proof. Observe first that for all w = (wn)n≥0,

P (W0 = e,W1 = w1, . . . ,Wk = wk | bndB) = P (W0 = e,W1 = w1, . . . ,Wk = wk | bndBw)

= P bndBw(W0 = e,W1 = w1, . . . ,Wk = wk)

= P (W0 = e,W1 = w1, . . . ,Wk = wk)
dwkλ

dλ
(bndBw)
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We will be using a clever formula (possibly due Rokhlin):

H((Wi)i≤k | bndB) = −
∫

logP (w, (Wi)i≤k | bndB)dP (w)

which gives us:

H((Wi)i≤k | bndB) = −H(µk)−
∫

log
dwkλ

dλ
(bndBw)dP (w)

We use the cocycle property of Radon-Nikodym derivatives, to transform the integrand in
the second term into a product:

dwkλ

dλ
(bndBw) =

n∏
i=1

dx1 . . . xiλ

dx1 . . . xi−1λ
(bndBw)

=
n∏

i=1

dxiλ

dλ
(w−1

i−1bndBw)

=
n∏

i=1

d(U i−1w)1λ

dλ
(bndB(U

i−1w)) (7.1)

Now writing the log of the product into sum of logs and using change of variables for
powers of U , noting that U is a measure-preserving map completes the proof. Note that
H(µk) = kH(µ) ■

Lemma 7.3. Let P and Q be two G-equivariant measurable partitions of (∂µG, ν) such
that Q is finer than P. Let bndP and bndQ denote the resepective µ-boundary maps. Then
H(W1 | bndP) ≥ H(W1 | bndQ) and equality holds iff P = Q.

Lemma 7.4. Suppose H(µ) < ∞. We have H(W1 | T ) = H(µ)− h(G, µ), where h(G, µ) is
the asymptotic entropy of the random walk. Here T is the tail σ-algebra.

Proof. Finiteness of H(µ) implies that h(G, µ) exists and in fact:

− 1

n
log µn ◦Wn → h(G, µ) a.s. and in L1(P ) . . . (∗)

Let n > 1 then for any k < N we have: H(Wk | Wn) + H(Wn) = H(Wk,Wn) = H(Wn |
Wk) + H(Wk) But H(Wn | Wk) = H(Wn−k) by Markov property, so H(Wk | Wn) =
H(Wk) +H(Wn−k)−H(Wn). Again, by Markov property H(Wk | (Wj)j≥n) = H(Wk | Wn).
Thus we have:

H(Wk | (Wj)j≥n) = H(Wk) +H(Wn−k)−H(Wn)

Now taking limit n → ∞: (∗) implies thatH(Wn−k)−H(Wn) =
∑k

i=1H(Wn−i)−H(Wn−i+1) →
−kh(G, µ) while by monotonicity of conditional entropy, H(Wk | (Wj)j≥n) → H(Wk | T )
where T is the tail σ-algebra. So:

H(Wk | T ) = k(H(µ)− h(G, µ))

■

Theorem 7.2. Let (B, λ, bndB) be a µ-boundary of G. Then for λ-a.e. γ ∈ B, we have:

h(P γ) = H(W1 | bndB)−H(W1 | bnd)
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Proof. By definition, we need to show that for λ-a.e., for P γ-a.e. w = (wn) ∈ Ω, γ ∈ B we
have:

− 1

n
logP γ([Wn = wn]) → H(W1 | bndB)−H(W1 | bnd) and also in L1(P γ)

By construction, the conditional probabilities P γ constitute a disintegration of P wrt to the
measurable partition induced by bndB, P (·) =

∫
P γ(·)dλ(γ). Thus it suffices to show that

for P -a.e. w ∈ Ω, we have:

− 1

n
logP bndBw([Wn = wn]) → H(W1 | bndB)−H(W1 | bnd) and also in L1(P )

Note that P γ([Wn = wn]) = P ([Wn = wn])dwnλ/dλ(γ), so:

logP bndBw([Wn = wn])

n
=

logP ([Wn = wn])

n
+

1

n
log

dwnλ

dλ
(bndBw)

=
logP ([Wn = wn])

n
+

1

n

n∑
i=1

d(U i−1w)1λ

dλ
(bndB(U

i−1w))

=
P (log[Wn = wn])

n
+

1

n

n∑
i=1

f(U i−1w)

where f : Ω → R is the function f(w) = log dw1λ
dλ

(bndBw). Observe that f is a P -integrable
function due to lemma 7.2. Since (Ω, P, U) is an ergodic system, by Birkhoff’s ergodic
theorem,

1

n

n∑
i=1

f(U i−1w) →
∫
Ω

fdP = H(µ)−H(W1 | bndB) a.s. and in L1

while by Kingman’s subadditive ergodic theorem and the fact that (Ωstep, µ
⊗N>0 , Ustep) is an

ergodic system implies,

logP ([Wn = wn])

n
=

log µn(wn)

n
→ −h(G, µ) a.s. and in L1

Now we simply use 7.4 to complete the proof.

Remark. σ(bnd) = I(mod P ) and we have used the fact that in this setting I = T (mod P ).

■

Now theorem 7.2 and lemma 7.3 give the promised entropy criterion

Theorem 7.3 (Entropy Criterion). A µ-boundary (B, λ) is the Poisson boundary iff the
asymptotic conditional entropies h(P γ) = 0 for λ-a.e. γ ∈ B.

We derive a corollary which characterizes vanishing of the asymptotic conditional entropies
in terms of growth rate of typical sets visited by the conditional random walk (conditioned
to hit some point on a µ-boundary).

Corollary 7.3.1 (Kaimanovich’s Enumeration Criterion). A µ-boundary (B, λ) of (G, µ)
is the Poisson boundary if and only if for λ-a.e. point γ ∈ B, there exists an ε > 0 and a
sequence of subsets of G, (An = An(γ))n≥1 such that:

(1) log |An| = o(n)
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(2) For sufficiently large n, P γ
n (An) > ε where P γ

n := (Wn)∗P
γ is law of the nth step of

the random walk conditioned to “hit” γ.

Proof. ⇐= : By the entropy criterion (theorem 7.3) it suffices to show that h(P γ) = 0 for
λ-a.e. point γ ∈ B. Choose any point γ ∈ B for which there exists an ε > 0 and a sequence
of sets (An)n≥1 and conditions (1), (2) hold. Suppose that h(P γ) > 0. Note that:

−1

n
logP γ

n ◦Wn → h(P γ) P γ a.s. and in L1(P γ) (∗)

Define the typical sets Sn = {g ∈ G | P γ
n (g) ≤ e−nh(P γ)/2}. Almost sure convergence in (∗)

implies that limn→∞ P γ[Wn /∈ Sn] = 0. Then:

P γ(Wn ∈ An ∩ Sn) =
∑

g∈An∩Sn

P γ(Wn = g) =
∑

g∈An∩Sn

P γ
n (g) ≤ |An ∩ Sn|e−nh(P γ)/2

≤ |An|e−nh(P γ)/2

So that (1) now gives: limn→∞ P γ(Wn ∈ An ∩ Sn) = 0. But:

P γ(Wn ∈ An) = P γ(Wn ∈ An ∩ Sn) + P γ(Wn ∈ An ∩ Sc
n)

≤ P γ(Wn ∈ An ∩ Sn) + P γ(Wn /∈ Sn)

So lim
n→∞

P γ(Wn ∈ An) = 0

which contradicts (2). Thus h(P γ) = 0.

=⇒ : By the entropy criterion, we know that for λ-a.e. γ ∈ B we have h(P γ) = 0.
Consider any such γ ∈ B. Fix ε > 0. Define Bn = {g ∈ G | P γ

n (g) ≥ 1/nε}. Then almost
sure convergence in (∗) implies that limn→∞ P γ(Wn ∈ Bn) = 1. So for sufficiently large n,
P γ(Wn ∈ Bn) = P γ

n (Bn) > ε. Also, |Bn| ≤ nε, so log |Bn| = o(n). ■

8. Ray approximation

Given a countable group G we define a gauge on G to be sequence of exhausting sets
G = (Gk)k≥1. A gauge induces (and is uniquely determined by) the gauge function
| · |G : G → N>0 defined by |x|G = min{k ∈ N>0 | x ∈ Gk}. We will say that a gauge
G = (Gk)k≥1 is:

• symmetric: if for all k, Gk = G−1
k or equivalently | · |G is symmetric.

• subadditive: if for all k, l, GkGl ⊂ Gk+l or equivalently, for all x, y ∈ G, |xy|G ≤
|x|G + |y|G.

• finite: if for all k, Gk is finite or equivalently, all fibers of | · |G are finite.
• temperate: if supk

1
k
log |Gk| is finite.

A family of gauges (Gα) will be called uniformly temperate if supk,α
1
k
log |Gk| is finite.

Remark. Note that family of G-translates (Gg)g∈G of a temperate gauge G: Gg = gG =
(gGk)k≥1 is uniformly temperate.

Let us now consider a natural class of gauges on a countable group G: namely word gauges.
G is said to be a word gauge if G1 generates G as a semigroup and Gk = Gk

1. Observe that:

• G is finite (resp. symmetric) iff G1 is finite (resp. symmetric).
• | · |G coincided with the word length wrt to the generating set G1 and Gk is the set of
groups elements with word length ≤ k.
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• A finite word gauge is also temperate.
• If G,G ′ are any two finite word gauges then ∀g ∈ G, C−1|g|G ≤ |g|G′ ≤ C|g|G. For
example, C = max{|g|G′ , |g′|G | g ∈ G1, g

′ ∈ G′
1} works.

Given a measured group (G, µ) and a µ-boundary (B, λ, bndB), we would like to assign a
ray to every boundary point γ ∈ B. One way of doing this in a reasonable manner is the
following:

• Construct measurable maps πn : B → G. Then (πn(γ))n≥1 could be thought of as an
abstract ray travelling to γ.

Now suppose we are given a decent gauge G on G. Consider the family of G-translates (Gg)g∈G
of this gauge. Then |h|Gg = |g−1h|G . The function d : G×G → N>0 defined by d(g, h) = |h|Gg

for g, h ∈ G gives a measure of separation between g, h: distance of h from g. In fact, when
G is symmetric and subadditive, d is a genuine metric. Thus it is reasonable to say thatthe
rays given by (πn) approximate sample paths if they track sample paths sublinearly:

• d(πn(bndB(w)), wn) = o(n) for P -a.e. sample path w = (wn) ∈ Ω.

We also expect the tracking asymptotics to somehow reflect the “geometry” of the group
as determined by d. We will see in theorem 8.2 below that ray approximation together with
subexponential growth of gauge sets guarantees that the µ-boundary under consideration is
the Poisson boundary of (G, µ). Before that, we prove a similar result using a more synthetic
ray approximation below.

Theorem 8.1. Let (G, µ) be a measured group with finite entropy i.e. H(µ) < ∞ and let
(B, λ, bndB) be a µ-boundary. If for λ-a.e. point γ ∈ B, there exists a uniformly temperate
sequence of gauges (Gn)n≥1 = (Gn(γ))n≥1 where Gn(γ) = (Gn,k(γ))k≥1 such that:

lim
n→∞

1

n
|wn|Gn(bndB(w)) = 0 for P -a.e. sample path w ∈ Ω (∗)

then (B, λ) is the Poisson boundary of (G, µ).

Proof. (∗) implies that for λ-a.e. γ ∈ B, and for P γ-a.e. w ∈ Ω, we have

lim
n→∞

1

n
|wn|Gn(γ) = 0

Consider any such γ and the setsAn = {g ∈ G | |g|Gn(γ) ≤
√
n}. Then |An| =

∑
k≤⌊

√
n⌋Gn,k(γ) ≤

C
√
n for some constant C (since (Gn(γ))n≥1 is uniformly temperate). So:

• log |An| = o(n)
• limn→∞ P γ(Wn ∈ An) = 1

So corollory 7.3.1 implies that (B, λ) is the Poisson boundary of (G, µ). ■

Theorem 8.2 (Ray approximation). Let (G, µ) be a measured group with finite entropy i.e.
H(µ) < ∞ and let (B, λ, bndB) be a µ-boundary. If there exists a temperate gauge G and a
sequence of measurable maps (πn : B → G)n≥1 such that:

lim
n→∞

1

n
|πn(bndB(w))−1wn|G = 0 for P -a.e sample path w ∈ Ω

then (B, λ) is the Poisson boundary of (G, µ).

Proof. Follows from theorem 8.1 using the gauges (Gn(γ))n≥1,γ∈B defined by:

Gn(γ) = (Gn,k(γ))k≥1, Gn,k(γ) = πn(γ)G
■
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9. Strip approximation

We begin by introducing the space of bilateral paths (Ω, P ).

• Ω = GZ equipped with the product σ-algebra.
• Until now we have been looking at the (unilateral) path space (Ω, P ) where Ω = GN,
P = p∗µ

⊗N>0 and the map p : Ωstep(= GN>0) → Ω is defined by p((xn)n≥1) = (wn)n≥0:

w0 = e, wn = wn−1xn for n ≥ 1 ∗
• If we are given a full sequence (xn)n∈Z, then using the same recursive formula in (∗),
we can extend (wn)n≥0 to a full sequence defined over Z. More precisely, we define a
map q : Ωstep → Ω where Ωstep = GZ equipped with the product σ-algebra and µ⊗Z,
by q((xn)) = (wn):

w0 = e, wn = wn−1xn for all n ∈ Z
Observe that w−(n+1) = w−nx

−1
−n so:

∀n > 0, wn = x1 . . . xn and w−n = x−1
0 . . . x−1

n−1

Define p+, p− : Ω → Ω by p+(w) = w, p−(w) = w̌ for all w = (wn)n∈Z where
w = (wn)n≥0 and w̌ = (w̌n)n≥0. For n ≥ 0, wn = wn, w̌n = w−n.

• Define P = q∗µ
⊗Z, P̌ = (p−)∗P . Observe that (p+)∗P = P . This follows from the

fact that the following diagram commutes:

Ωstep Ω

Ωstep Ω

q

p+

p

where the vertical inclusion on the left maps w to (c,w) for some fixed c ∈ GZ≤0 .
Also observe that P̌ is the law of a random walk on G with step law given by the
reflected measure µ̌: ∀g ∈ G, µ̌(g) = µ(g−1) starting at identity.

• Clearly p+ ◦ q and p− ◦ q are independent random variables and the map (p+, p−) :
(Ω, P ) → (Ω× Ω, P ⊗ P̌ ) is an isomorphism of measure spaces.

Remark. For any bilateral path w passing through the identity at time 0, p+(w), p−(w) give
the future and past halves of the path. All that one is saying is that the future unilateral
path has the same law as the random walk with step law µ while the past unilateral path
has the law of the random walk with step law µ̌. The full bilateral path is the independent
coupling of past with future.

• In fact q is also an isomorphism with q̃((wn)) = (wnw
−1
n−1) being an inverse, so the

Bernoulli shift U step on Ωstep induces one on the bilateral path space: U = q ◦U step ◦ q̃.
• How does U act on a bilateral path w = (wn) passing through e at time 0? Does a
standard Bernoulli shift: (wn) 7→ (wn+1) and then a change of coordinate so as to
make the path pass through identity at time 0, i.e. (wn+1) 7→ (w−1

1 wn+1).
• Note that U is an ergodic measure-preserving transformation. We immediately deduce
that:

Proposition 9.1. Let (B+, λ+), (B−, λ−) be µ-,µ̌-boundaries of (G, µ) respectively. The
diagonal action of G on (B− ×B+, λ− ⊗ λ+) is ergodic.
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Proof. Let π denote the map bnd− × bnd+ ◦ p− × p+ : Ω → B− × B+. Suppose A is a
G-invariant subset of B− ×B+. For any w ∈ Ω,

π(U(w)) = (bnd−(p−(U(w))), bnd+(p+(U(w))))

= (bnd−(w
−1
1 T (w)), bnd+(w

−1
1 T (w̌)))

= w−1
1 (bnd−(w), bnd+((̌w))) (bnd± is G-equivariant and T -invariant)

= w−1
1 π(w)

i.e. π−1(A) is U -invariant. So P (π−1(A)) = 0 or 1 i.e. λ− ⊗ λ+(A) = 0 or 1. Thus the
diagonal action of G on (B− ×B+, λ− ⊗ λ+) is ergodic. ■

We are ready to see an abstract strip approximation:

Theorem 9.1. Let (B+, λ+, bnd+), (B−, λ−, bnd−) be µ,µ̌-boundaries of (G, µ) respectively.
Let G = (Gk)k≥1 be a gauge on G with gauge function | · | and let S : B− ×B+ → P(G) be a
G-equivariant map, which assigns to pairs (γ−, γ+) ∈ B− ×B+, non-empty subsets S(γ−, γ+)
(“strips”). If:

(1) H(µ) is finite.
(2) ∀g ∈ G, for λ− ⊗ λ+-a.e. (γ−, γ+) ∈ B− ×B+:

1

n
log |S(γ−, γ+)g ∩G|Wn|| →

n→∞
0 in probability.

Then the boundary (B+, λ+) is maximal.

Proof. Let us denote the composition Ω
p±→ Ω

bnd±→ B± by Π±. Next, observe that since all
strips are necessarily non-empty, there exists some g ∈ G for which

λ− ⊗ λ+({(γ−, γ+) ∈ B− ×B+ | g ∈ S(γ−, γ+)}) > 0

Thus if necessary, we may replace S by its g−1-right translate so that:

λ− ⊗ λ+({(γ−, γ+) ∈ B− ×B+ | g ∈ S(γ−, γ+)}) = P̄ [e ∈ S(Π−,Π+)] = p > 0

This is useful because:

P̄ [Wn ∈ S(Π−,Π+)] = P̄ [e ∈ S(W−1
n Π−,W

−1
n Π+)] (G-equivariance of strips)

= P̄ [e ∈ S(Π− ◦ Un
,Π+ ◦ Un

)]

= P̄ [e ∈ S(Π−,Π+)] = p (U preserves P̄ )

Claim: P̄ [Wn ∈ S(Π−,Π+)] =

∫∫
P γ+
n (S(γ−, γ+))dλ−(γ−)dλ+(γ+)
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This is a simple computation.

P̄ [Wn ∈ S(Π−,Π+)] = P̌ ⊗ P [Wn ∈ S(bnd−, bnd+)]

=

∫ (∫
P [wn ∈ S(bnd−(w̌), bnd+(w))]dP (w)

)
dP̌ (w̌)

=

∫ (∫
P γ+ [wn ∈ S(bnd−(w̌), γ+)]dλ+(γ+)

)
dP̌ (w̌)

=

∫ (∫
P γ+
n (S(bnd−(w̌), γ+))dP̌ (w̌)

)
dλ+(γ+)

=

∫∫
P γ+
n (S(γ−, γ+))dλ−(γ−)dλ+(γ+)

Let Kn = min{k ≥ 1 | µn(Gk) ≥ 1− p/2}. So in words, Kn is the smallest positive integer k
such that the probability of the random walk being in the kth gauge set (read level set) is at
least 1− p/2.

Claim: λ− ⊗ λ+ ((γ−, γ+) ∈ B− ×B+ | P γ+
n [S(γ−, γ+) ∩GKn ] ≥ p/4]) ≥ p/4

Note that P γ+
n [S(γ−, γ+)] ≤ P γ+

n [S(γ−, γ+) ∩GKn ] + (1− P γ+
n [GKn ]) so∫∫

P γ+
n [S(γ−, γ+) ∩GKn ]dλ−(γ−)λ+(γ+)

≥
∫∫

P γ+
n [S(γ−, γ+)]dλ−(γ−)λ+(γ+) +

∫
P γ+
n [GKn ]λ+(γ+)− 1 ≥ p+ (1− p/2)− 1 = p/2

The claim now follows.
On the other hand, condition (2) says that:

for λ− ⊗ λ+-a.e. (γ−, γ+)∀ε > 0, P

[
1

n
log |S(γ−, γ+) ∩G|Wn|| ≥ ε

]
→ 0

So since P [|Wn| = Kn] ≥ 1− p/2 > 0, we have:

for λ−⊗λ+-a.e. (γ−, γ+)∀ε > 0, P

[
1

n
log |S(γ−, γ+) ∩G|Wn|| < ε and |Wn| = Kn

]
→ 1−p

2
> 0

Thus for λ− ⊗ λ+-a.e. (γ−, γ+) lim
n→∞

1

n
log |S(γ−, γ+) ∩GKn| = 0

By Egoroff’s theorem, we deduce that there exists a measurable set Z ⊂ B− × B+ such
that λ− ⊗ λ+(Z) ≥ 1− p/8 and 1

n
log |S(γ−, γ+) ∩GKn| converges to 0 uniformly on Z. Now

let:

An(γ−, γ+) = S(γ−, γ+) ∩GKn

Zn = Z ∩ {(γ−, γ+) | P γ+
n (An(γ−, γ+)) ≥ p/4}

W = p+ (∩n≥1 ∪m≥n Zm)

Note that λ− ⊗ λ+(Zn) ≥ p/8. So λ+(W ) ≥ lim supn→∞ λ− ⊗ λ+(Zn) ≥ p/8 > 0. For almost
every γ+ ∈ W , there is a γ− ∈ B− such that for infinitely many n, P γ+

n (An(γ−, γ+)) ≥ p/4 i.e.
lim supn→∞ P γ+

n (An(γ−, γ+)) ≥ p/4 > 0 while log |An(γ−, γ+)| = o(n). Thus it follows from
corolloary 7.3.1 that (B+, λ+) is maximal. ■
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Remark. Both theorem 8.1 and theorem 9.1 say that if one is able to track the location of
the random walk conditioned to travel to a given boundary point at any time using some
nominal data upto o(n) error then our boundary is maximal.

• This idea needs to be understood more carefully
• Does theorem 9.1 say in any concrete manner that the strips approximate/track
bilateral paths?

It is not quite clear how one is supposed to go about verifying condition (2) in the abstract
strip approximation theorem. As we see below, if we throw in some moment conditions and
give our gauge more structure, condition (2) can be turned into a deterministic criterion.

Lemma 9.1. If G is a temperate gauge on G with finite first moment, then H(µ) is finite.

Proof. ■

Theorem 9.2 (Strip approximation). Let (B+, λ+, bnd+), (B−, λ−, bnd−) be µ,µ̌-boundaries
of (G, µ) respectively. Let G = (Gk)k≥1 be a subadditive, temperate gauge on G with gauge
function | · | and let S : B− ×B+ → P(G) be a measurable G-equivariant map. If either of
the following hold then (B−, λ−), (B+, λ+) are maximal:

(1) | · | has finite first moment and the strips grow subexponentially:

Eµ[| · |] =
∑
g∈G

|g|µ(g) < ∞ (finite moment)

for λ− ⊗ λ+-a.e. (γ−, γ+), lim
k→∞

1

k
log |S(γ−, γ+) ∩Gk| = 0 (subexp growth)

(2) | · | has finite entropy, finite first logarithmic moment and strips grow polynomially:

H(µ) < ∞ (finite entropy)

Eµ[log | · |] =
∑
g∈G

log |g|µ(g) < ∞ (finite logarithmic moment)

for λ− ⊗ λ+-a.e. (γ−, γ+), sup
k>1

1

log k
log |S(γ−, γ+) ∩Gk| < ∞ (polynomial growth)

Proof. We start with (1). Note that since the gauge function is subadditive and has finite
first moment, using the subadditive ergodic theorem for the ergodic system (Ω, P, U), we
have:

(∗) |Wn|
n

→ l P -almost surely and in L1(P ) In fact l = inf
n

EP (|Wn|)
n

Now let w = (wn)Ω be any sample path, (γ−, γ+) ∈ B− ×B+ and g ∈ G. Then:

|S(γ−, γ+)g ∩G|wn|| = |S(γ−, γ+) ∩G|wn|g
−1|

≤ |S(γ−, γ+) ∩G|wn|+|g−1|| (Subadditivity of gauge)

=⇒ 1

n
log |S(γ−, γ+)g ∩G|wn|| ≤

(
log |S(γ−, γ+) ∩G|wn|+|g−1||

|wn|+ |g−1|

)(
|wn|+ |g−1|

n

)
Now it follows from subexp growth of strips and transience of the random walk that the first
factor can be arbitrarily small for sufficiently large n while (∗) ensures that the second factor
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remains bounded. Thus:

∀g ∈ G for λ− ⊗ λ+-a.e. (γ−, γ+), lim sup
n→∞

1

n
log |S(γ−, γ+)g ∩G|Wn| → 0P -a.s.

This proves the maximality of (B+, λ+) using theorem 9.1 and lemma 9.1. The same argu-
ments can be made for the reflected measure µ̌ too.

Moving on to (2), it is clear that a proof analogous to that of (1) can be done once we have
showed:

log |Wn|
n

→ 0 P -a.s.

log |Wn| = log(
∑n

i=1 |Xi|) and log |Xn|/n → 0 a.s. since Eµ[log |Xn|] = Eµ[log |W1|] < ∞.
Now:

n∑
i=1

|Xi| ≤ n
n∏

i=1

|Xi|

so we also have log |Wn|/n → 0 P -a.s. ■

9.1. Applications of Strip Approximation to Compactification Boundaries. Recall
the section on compactification boundaries of groups, in particular section 6.6 and theorem 6.4.
We introduce another condition on a group compactification, adding to CE,CP and CS
defined in section 6.6

Definition 9.1. Let G be a countable group and G = G ∪ ∂G be a compactification of G.
We say that it has property (CG) if:

CG: There is a left-invariant metric d on G such that the corresponding gauge |g|d := d(e, g)
is temperate. For all (γ−, γ+) ∈ ∂(2)G:

• There is at least one bi-infinite d-geodesic α in G such γ−, γ+ are limit points of the
negative and positive rays of α respectively. We will call the set of such geodesics,
the pencil P (γ−, γ+).

• There is a finite set A(γ−, γ+) such that any geodesic from P (γ−, γ+) intersects
A(γ−, γ+).

Theorem 9.3 (Strip Approximation for Compactification Boundaries). Let G = G ∪ ∂G
be a separable compactification of a countable group G satisfying CE,CP,CS and CG. Let
µ ∈ Prob(G) such that:

(1) The subgroup generated by the support of µ is non-elementary wrt this compactification.
(2) H(µ) < ∞
(3) µ has finite logarithmic moment wrt the gauge determined my the metric in condition

CG.

There exists a unique µ-stationary measure ν on ∂G and (∂G, ν) is the Poisson boundary of
(G, µ).

Proof.

• Note that CP, CS and (1) enable us to use theorem 6.4 so that for the random walk
on G with step law µ:

– we have boundary convergence: As n → ∞, Wn → W∞ ∈ ∂G P -a.s.
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– λ+ = (W∞)∗P is the unique µ-stationary measure on ∂G and λ+ is purely
non-atomic.

Similarly for the random walk on G with step law µ̌:
– we have boundary convergence: As n → ∞, W̌n → W̌∞ ∈ ∂G P̌ -a.s.
– λ− = (W̌∞)∗P̌ is the unique µ̌-stationary measure on ∂G and λ− is purely
non-atomic.

i.e. λ+ = λ−.
• Since both λ− and λ+ are purely non-atomic, λ− ⊗ λ+(∆) = 0 where ∆ = {(x, x)|x ∈
∂G}.

• So CG implies that for λ− ⊗ λ+-a.e. (γ−, γ+) ∈ ∂G × ∂G, there exists a minimal
M(γ−, γ+) > 0 such that all geodesics from P (γ−, γ+) intersect an M -ball.

• By the G-equivariance of pencils, it follows that the map (γ−, γ+) → M(γ−, γ+) is
G-invariant so it must be constant say M0 almost everywhere, since the diagonal
action of G on (∂G× ∂G, λ− ⊗ λ+) is ergodic (proposition 9.1).

• Now in order to implement theorem 9.2, define S̃(γ−, γ+) to be the union of all balls
B of diameter M0 such that every geodesic of P (γ−, γ+) intersects B. Therefore, for
any geodesic α ∈ P (γ−, γ+), S̃(γ−, γ+) ⊂ NM0(α), whence the strips S̃ grow linearly.
Thus using strip approximation i.e. theorem 9.2, we conclude that both (∂G, λ) is
maximal.

■

10. Pivots á la Gouëzel

Pivots were introduced and utilized by Gouëzel in order to show linear escape with
exponential tail for random walks on hyperbolic spaces with finite entropy, assuming no
moment conditions. They also play a pivotal role in the Poisson boundary identification
problem, as we will see later. More importantly, pivots essentially encode what samples paths
look like.
The setting is as follows: Let (X, d) be a general δ-hyperbolic metric space and G be a
countable group of isometries of X. Fix any basepoint o ∈ X and a non-elementary measure
(to be defined soon) on G. If (Zn) denotes the random walk on G with step law µ then we
wish to understand the random walk (Zno). Following Gouëzel, we will introduce the theory
of pivots with the aim to establish linear progress with exponential tail of this random
walk:

∃κ > 0 such that P(d(Zno, o) ≤ κn) ≤ e−κn for n sufficiently large

Definition 10.1. Given any element g ∈ G, we define its translation length as τ(g) =
limn→∞ d(gno, o)/n. A group element is called loxodromic if it has non-zero translation
length. A semi-group is said to be non-elementary if it contains two distinct independent
loxodromic elements, i.e two loxodromic elements with disjoint fixed sets in the hyperbolic
boundary of X. We call a measure µ on G non-elementary if the semi-group generated by
its support, sgr(µ), is non-elementary.

To begin with, we consider the case when G is a free group. This will be our toy example
for developing pivots.

10.1. Toy Case: Free groups. Consider the free group on d generators Fd = ⟨a1, . . . , ad⟩
and let S = {ai, a−1

i | 1 ≤ i ≤ d}. Consider the probability measure µ = µS ∗ ν on Fd where
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µS is the uniform probability measure on S and ν is some probability measure on Fd. We
will be analyzing the random walk on Fd with step law µ. In particular, we will be proving
the following result:

Theorem 10.1. Suppose d ≥ 3 and ν(e) = 0. Let (gn) be a sequence of i.i.d. random
variables with law µ = µS ∗ ν. Then there exists a κ > 0 independent of ν and d such that:

∀n ∈ N,P(|Zn| ≤ κn) ≤ e−κn

Evidently theorem 10.1 follows from the following lemma:

Lemma 10.1. Suppose d ≥ 3 and ν(e) = 0. Fix a sequence (wn) of elements in Fd−{e} and
let (Sn) be an i.i.d. sequence of random variables with law µS. Consider the process defined
by: Z0 = e, Zn = Zn−1Snwn for n ≥ 1. Then:

∀n ∈ N,P(|Zn| ≤ κn) ≤ e−κn

Remark.

• Observe that µ is a non-elementary measure so the linear escape bit in Theorem 10.1
follows from the non-amenability of Fd and exponential growth rate of balls, by
corollary 2.1.1.

• While the assumptions d ≥ 3 and ν(e) = 0 are necessary for the proof we give below,
they will no longer be necessary when we develop pivots and prove linear escape for
random walks on hyperbolic spaces with general step laws.

In order to prove lemma 10.1, we need to show that the walk does not backtrack too often,
and that the cost of backtracking grows exponentially with the length of the beacktracking
segment.
Let γn denote the path in the Cayley graph of Fd corresponding to the walk upto time
n, i.e., the concatenation of the geodesics joining e to S1, S1 to S1w1, . . . , S1w1 . . . Sn to
S1w1 . . . Snwn. A time k ∈ [n] is called a pivotal time wrt n if:

P1: Sk ̸=inverse of the last letter of Zk−1

Sk ̸= inverse of the first letter (wk)0 of wk.
P2: The path γn does not backtrack to Zk−1Sk after time k.

P1 says the walk goes away from the origin during two steps (Sk and (wk)0) and P2 says
that after that the walk remains in the subtree based at Zk−1Sk(wk)0. Let P0 = ϕ and
Pn = {pivotal times wrt n} for n ≥ 1. Thus we can estimate the progress of the walk by
understanding how the (random) sets Pn evolve.

• Observe that Pn+1 ⊂ Pn ∪ {n + 1}. This is because at time n + 1, either n + 1
satisfies the local geodesic condition P1 so that Pn+1 = Pn ∪ {n+ 1}, otherwise there
is backtracking and some pivotal times are destroyed i.e. Pn+1 ⊂ Pn.
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• We will now introduce a partition on Sn which will help us understand the evolution of
pivotal times. Let s̄ = (s1, . . . , sn), s̄

′ = (s′1, . . . , s
′
n) ∈ Sn. We say that s̄′ is pivoted

from s̄ if:
(1) they have the same pivotal times: Pn = P ′

n where we abuse notation a little
writing Pn(s̄) = Pn and Pn(s̄

′) = P ′
n.

(2) ∀k /∈ Pn, sk = s′k.
This is an equivalence relation on Sn and we write En(s̄) as the equivalence class of s̄,
i.e. sequences s̄′ which are pivoted from s̄.

• What do elements of En(s̄) look like? Let |Pn| = q. Obviously if q = 0, that is
there are no pivots wrt time n, then En(s̄) = {s̄}. So suppose q ≥ 1. Say k is a pivotal
time wrt n and let s′k be any element of S such that (s1, . . . , s

′
k, . . . , sn) satisfies P1.

Claim. (s1, . . . , s
′
k, . . . , sn) ∈ En(s̄).

The point here is that P2 depends only on the part of the walk after time k, i.e.
it only depends on sk+1, . . . , sn, after all, P2 says that the part of γn starting at
Zk−1sk(wk)0 does not backtrack to Zk−1sk, i.e. the path that is the concatenation
of geodesics e to wk, wk to wksk+1, . . . , wksk+1 . . . sn to wksk+1 . . . snwn does not
backtrack to e. Changing sk to s′k does not change the behaviour of the bit of the walk
subsequent to time k. This phenomena is what’s behind the terminology. Therefore:

Claim (Pivoting). If k1 < · · · < kq are the pivotal times wrt n corresponding to s̄,
and s′k1 , . . . , s

′
kq

∈ S satisfy the local geodesic condition at the pivotal times k1, . . . , kq
resp., then s̄′ = (s1, . . . , s

′
k1
, . . . , s′kq , . . . , sn) is pivoted from s̄. In fact, any s̄′ which is

pivoted from s̄ is of this form.

There are |S|−1 or |S|−2 choices for each s′ki depending on the local situation. Thus
when conditioned to En(s̄), Sk1 , . . . , Skq remain independent but no longer identically

distributed. Also, |En(s̄)| ≥ q|S|−2.
• Set An = |Pn|. Then |Zn| ≥ An. Thus lemma 10.1 follows once we prove that pivots
are abundant.

Proposition 10.1 (Abundance of pivots). An+1 ≥ An + U in distribution, i.e., P(An+1 ≥
i) ≥ P(An + U ≥ i) for all i, where U is a random variable independent from An and
distributed as:

P(U = j) =


d−1
d

; j = 1

0 ; j = 0
2d−3

d(2d−2)|j|
; j < 0

Proof. Fix s̄ = (s1, . . . , sn) ∈ Sn and let q = |Pn(s̄)|. We will prove the estimate by
conditioning on En(s̄).
Case - 1: q = 0. So Pn+1 is either empty or n+ 1 is a pivotal time.

• En(s̄) = {s̄}. There are at least 2d − 2 choices of s′n+1 such that n + 1 satisfies the
local geodesic condition. So

P(An+1 ≥ 0 | En(s̄)) = 1 > P(U ≥ 0)

P(An+1 ≥ 1 | En(s̄)) ≥
2d− 2

2d
= P(U = 1) = P(U ≥ 1)

Case - 2: q ≥ 1. Consider any (s̄′, s′n+1) ∈ Sn+1 with s̄′ ∈ En(s̄).
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• As observed before, after time kq, the walk only depends on si, wj for i > kq and
j ≥ kq. So the last letter of Z ′

n is the same for all s̄′.
• Thus there are at least 2d− 2 choices for s′n+1 so that (s̄′, s′n+1) has n+ 1 as a pivotal
time wrt n+ 1. For these good choices, Pn((s̄

′, s′n+1)) = Pn(s̄
′) ∪ {n+ 1}. So

P(An+1 ≥ q + 1 | En(s̄)) ≥
2d− 2

2d
= P(U = 1)

P(An+1 ≥ q | En(s̄)) ≥ P(An+1 ≥ q + 1 | En(s̄)) ≥ P(U ≥ 0)

• Now if s′n+1 is not a good choice, then there is backtracking. Note that since kq is
pivotal wrt n, d(Z ′

n, Z
′
kq−1skq) ≥ 1. So Z ′

ns
′
n+1 can at most backtrack till Z ′

kq−1skq
(so that kq is no longer pivotal). This requires s′n+1 = (wkq)

−1
0 . On the other hand if

Z ′
ns

′
n+1 does not manage to backtrack till Z ′

kq−1skq , then for Z ′
ns

′
n+1wn+1 to backtrack

till (and beyond) Z ′
kq−1s

′
kq
, s′kq has to be the inverse of the corresponding letter in

wn+1.Thus:

P(An+1 ≤ q − 1 | En(s̄)) ≤
1

2d
+

2

2d

1

2d− 2
≤ 2

2d

In general, to cross j > 1 pivotal times one must make a specific choice of generator
at the crossed pivotal times after the very first one, which happen with at most
probability 1

2d−2
. So for j ≥ 1:

P(An+1 ≤ q − j | En(s̄)) ≤
2

2d

1

(2d− 2)j−1

Thus we have for j ≥ 1:

P(An+1 ≤ q − j | En(s̄) ≤ P(U ≤ −j)

P(An+1 ≥ q + 1 | En(s̄)) ≤ P(U ≥ 1)

from which we get:

∀i,P(An+1 ≥ i | En(s̄)) ≤ P(An + U ≥ i | En(s̄))
As this is uniform over all s̄ ∈ Sn, our claim follows.

■

10.2. General case: Groups acting on hyperbolic metric spaces. As we saw earlier,
keeping track of pivotal times and showing their abundance gives us control on the distance
of the random walk from the identity. In trying to generalize this notion to the case of groups
acting on hyperbolic metric spaces, we have the following questions/prompts:

• Need to come up with a geometric analogue of the subtree in P2 so as to encode the
absence of backtracking.

• Need to understand how progress is made in a general hyperbolic space. This is
related to reformulating P1. That is, what does a random sample path travelling to
a point in the hyperbolic boundary of the space look like ? This also relates to the
reason why we looked at measures of a specific form in the toy case. We will explain
this shortly.

• Finally, we need to think about making sense of a univeral compass which allows us
to change direction, just as we could pivot between sub-trees in the toy case.
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Let X be a δ-hyperbolic metric space. We will say that points x, y, z ∈ X are C-aligned if
(x, z)y ≤ C. Recall that the C-shadow of x seen from o, denoted by So(x;C), is defined to
be the set of all points y ∈ X such that o, x, y are C-aligned. Here is the idea for making
progress in a hyperbolic metric space:

Suppose x0, . . . , xn is a sequence of points in X such that xi+1 is in the C-shadow of xi as
seen from xi−1 for some fixed C ≥ 0 and for all 0 < i < n. If the distance between consecutive
points is bounded from below by a sufficiently large number D = D(C, δ) then xn is at least
at a distance of n from x0.

Given that the step law of our random walk is non-elementary, we will see that we can keep
track of certain pivotal times in a random sample path such that the positions of the walk
at these times look just like those described in the box above. Before we move on to make all
this precise, we will formalize such type of sequences, record some of their properties and
also introduce a coarser version of a shadow, more suitable for our purposes.

Remark. Note that in what follows it may help to read x, y, z are C-aligned as z lies in
the C-shadow of y seen from x for the sake of geometric intuition.

Lemma 10.2. Let x, y, z ∈ X be C-aligned. Then:

d(x, z) ≥ d(x, y)− C, d(x, z) ≥ d(y, z)− C

Lemma 10.3. Suppose w, x, y, z ∈ X are such that: w, x, y are C-aligned, x, y, z are (C+ δ)-
aligned, and d(x, y) ≥ 2(C + δ) + 1. Then w, x, z are (C + δ)-aligned.

Definition 10.2. For C,D ≥ 0, a sequence of points x0, . . . , xn will be called a (C,D)-chain
if xi−1, xi, xi+1 are C-aligned (i.e. xi+1 lies in the C-shadow of y seen from x) for all 0 < i < n
and d(xi, xi+1) ≥ D for all 0 ≤ i < n.

This is the type of sequence we mentioned in the box.

Lemma 10.4. Let x0, . . . , xn be a (C,D)-chain with D ≥ 2(C + δ) + 1. Then

• (Direction) xn lies in the (C + δ)-shadow of x1 as seen from x0.
• (Progress)

d(x0, xn) ≥
n−1∑
i=0

(d(xi, xi+1)− 2(C + δ)) ≥ n

Lemma 10.5. Let x0, . . . , xn be a (C,D)-chain with D ≥ 2(C + 2δ) + 1. Then for all
0 < i < n, x0, xi, xn are (C + 2δ)-aligned.

Suppose x, y, z ∈ X and some C ≥ 0. If z ∈ Sx(y;C) then do we have Sy(z;C) ⊆ Sx(y;C)?
Not necessarily.

Definition 10.3. Let C ≥ 0 and y, y+, z ∈ X. z is said to lie in the C-chain-shadow of y+

seen from y, if there is a (C, 2(C + δ) + 1)-chain y = x0, x1, . . . , xn = z such that y, y+, x1 are
C-aligned. CSy(y

+;C) will denote the set of all points z ∈ X which lie in the C-chain-shadow
of y+ seen from y.

Note that if z ∈ CSx(y;C) then CSy(z;C) ⊆ CSx(y;C).

Lemma 10.6 (Comparing shadows and chain-shadows). Let y, y+ ∈ X and C ≥ 0. We
have:

Sy(y
+;C) ⊂ CSy(y

+;C) ⊂ Sy(y
+; 2C + δ)
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A universal means of changing direction will be enabled by the notion of Schottky set.

Definition 10.4. Let o be a fixed basepoint in X and η, C,D ≥ 0. We call a finite set of
isometries S of X an (η, C,D)-Schottky set if:

(1) ∀x, y ∈ X

|{s ∈ S | x, o, sy are C-aligned}|
|S|

≥ 1− η,
|{s ∈ S | x, o, s−1y are C-aligned}|

|S|
≥ 1− η

(2) ∀s ∈ S d(o, so) ≥ D

Proposition 10.2 ([Gou22], Corollary 3.13). Let G be a countably infinite group of isometries
of X and let µ be a non-elemenatary probability measure on G. For all η > 0, there exist a
C > 0 such that for all D > 0, there is a positive integer N and an (η, C,D)-Schottky set in
the support of µN .

We fix η = 1/100 and a C0 > 0 provided by proposition 10.2. Fix D >> C0. Then by
proposition 10.2 there is a positive integer N and a (1/100, C0, D)-Schottky set S contained
in the support of µ. Let α = min{µ(s) | s ∈ S2}. Then there is a probability measure ν on
G such that µ2N = αµ2

S + (1− α)ν, where µS is the uniform measure on the set S. We can
re-write our random walk so as to reflect this decomposition.

• Let (Ai)i≥1, (Bi)i≥1 be sequences of S-valued i.i.d. random variables with law µS.
Define Si = AiBi for all i ≥ 1.

• Let (Hi)i≥1 be a sequence of G-valued random variables with law ν.
• Let (εi)i≥1 be a sequence of i.i.d. random variables with law given by: P(εi = 1) =
α,P(εi = 0) = 1− α

• Consider the random variables (γi)i≥1 defined by:

γi =

{
Si ; εi = 1

Hi ; εi = 0

Clearly, (γi) are i.i.d. random variables with law µ. Thus at each step of our random
walk, we perform a (biased) coin toss to decide if we want to change direction or walk
straight ahead. In order to understand the random walk from this point of view, we
study the following stochastic process.

Let (wi)i≥0 be a sequence of isometries of X.Our goal now is to study the process given by
(w0S1w1 . . . Snwno)n≥1. Define:

y−i = w0S1w1 . . . wi−1Si−1o

yi = w0S1w1 . . . wi−1Si−1Aio

y+i = w0S1w1 . . . wi−1Si−1AiBio

Observe that d(y−i , yi), d(yi, y
+
i ) ≥ D since Ai, Bi are elements of the Schottky set. But what

about the distance between y+i and y−i+1? We will remember those times when we have good
control on this quantity.

We will inductively define a sequence of random subsets Pn ⊂ [n]. Elements of Pn will
be called pivotal times wrt n.

• Set P0 = ϕ.
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• For n ≥ 1, suppose Pn−1 has already been defined. Then, either n is a pivotal time
and Pn = Pn−1 ∪ {n} or some pivots are destroyed and we set Pn = Pn−1 ∩ [m].

• Let k = k(n) be the last pivotal time before n, i.e. k(n) = max(Pn−1). Define k(1) = 0
and y0 = o.

• We define Pn = Pn−1 ∪ {n} if the local geodesic condition is satisfied at time n,
i.e.:
P: yk, y

−
n , yn, y

+
n , y

−
n+1 are C0-aligned:

∗ Rear . yk, y
−
n , yn are C0-aligned.

∗ Middle. y−n , yn, y
+
n are C0-aligned.

∗ Front . yn, y
+
n , y

−
n+1 are C0-aligned.

otherwise there is backtracking. Let m ∈ Pn−1 be the largest time for which y−n+1 ∈
CSym(y

+
m;C0 + δ) and set Pn = Pn−1 ∩ [m]. If there is no such m, set Pn = ϕ.

Before studying how the random sets (Pn) evolve, we record some important observations:

Lemma 10.7 (Pivot-shadow lemma). Suppose Pn ̸= ϕ. Let m = max(Pn). Then y−n+1 ∈
CSym(y

+
m;C0 + δ).

Lemma 10.8. Let Pn = {k1 < · · · < kq}. Then y−k1 , yk1 , y
−
k2
, yk2 , . . . , y

−
kq
, ykq , y

−
n+1 is a

(2C0 + 3δ,D − (2C0 + 3δ))-chain.

Lemma 10.9. Let Pn = {k1 < · · · < kq}. Then o, yk1 , y
−
k2
, yk2 , . . . , y

−
kq
, ykq , y

−
n+1 is a (2C0 +

4δ,D − (2C0 + 3δ))-chain.

Proposition 10.3. d(o, y−n+1) ≥ |Pn|

We will now introduce a partition on (S2)n which will help us understand the evolution
of pivotal times. Let s̄ = (s1 = a1b1, . . . , sn = anbn), s̄

′ = (s′1 = a′1b
′
1, . . . , s

′
n = a′nb

′
n) ∈ (S2)n.

We say that s̄′ is pivoted from s̄ if:

(1) they have the same pivotal times: Pn = P ′
n where we abuse notation a little, writing

Pn(s̄) = Pn and Pn(s̄
′) = P ′

n.
(2) ∀k ≤ n, bk = b′k.
(3) ∀k /∈ Pn, ak = a′k.

This is an equivalence relation on (S2)n we denote the equivalence class containing s̄ by En(s̄):
these are the sequences s̄′ ∈ (S2)n which are pivoted from s̄. What do elements of En(s̄)
look like? Let q = |Pn|. Of course if q = 0, then En(s̄) = {s̄}. For q ≥ 1, we have the
following observation:

Lemma 10.10. Suppose i is a pivotal time of s̄. Let a′i ∈ S be any element such that the local
geodesic condition still holds at time i for the modified sequence s̄′ = (s1, . . . , s

′
i = a′ibi, . . . , sn).

Then s̄′ ∈ En(s̄).

Proof. Since conditions (2), (3) are already satisfied, we only need to show that s̄ and s̄′ have
the same pivotal times. Note that Pj only depends on w0, S1,W1, . . . , Sj,Wj . So Pi−1 = P ′

i−1.
Since the local geodesic condition holds at time i for both s̄ and s̄′, we have Pi = P ′

i . For j > i,
Pj only depends on Bi, wi, . . . , Aj, Bj, wj (to see this, inspect the local geodesic condition (P)
and recall that d is G-invariant), which are the same for s̄ and s̄′. So Pn = P ′

n. ■

Proposition 10.4 (Abundance of pivots). Let An = |Pn| be the number of pivotal times wrt
n. Then, An+1 ≥ An + U in distribution, i.e. P(An+1 ≥ i) ≥ P(An + U ≥ i) for all i, where
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U is a random variable independent from An and distributed as:

P(U = j) =


9
10

; j = 1

0 ; j = 0

9
(

1
10

)−j+1
; j < 0

Proof. Fix s̄ = (s1 = a1b1, . . . , sn = anbn) ∈ (S2)n and let q = |Pn(s̄)|. We will prove the
inqeuality by conditioning on En(s̄).

Claim (A). P(An+1 = q + 1 | En(s̄)) ≥ 9
10

Proof of claim A. An+1 = An+1 if and only if n+1 is pivot, i.e. the local geodesic condition
is satisfied at time n+ 1. Let k = max(Pn). Observe that for k < j ≤ n, Aj takes the same
values over all elements of En(s̄). Observe that:

• Front (yn+1, y
−
n+2)y+n+1

= (b−1
n+1o, wn+2o)o

• Middle (y−n+1, y
+
n+1)yn+1 = (a−1

n+1o, bn+1o)o
• Rear (yk, yn+1)y−n+1

= ((bkwk . . . bnwn)
−1o, an+1o)o

By Schottky property, probability of choosing bn+1 such that front holds, is at least 99/100.
Having chosen bn+1, again by Schottky property, probability of choosing an+1 such that
middle and rear hold is at least 98/100. Thus, P(An+1 = q + 1 | En(s̄)) ≥ 99

100
· 98
100

≥ 9
10
. ■

Claim (B). For all j ≥ 0, P(An+1 < q − j | En(s̄)) ≤
(

1
10

)j+1
.

Proof of claim B. To begin with, claim (A) can be re-written as P(n+ 1 is pivotal | En(s̄)) ≥
9
10
. Now: P(An+1 < q − j | En(s̄)) = P(An+1 < q − j | En(s̄), n + 1 is not pivotal) × P(n +

1 is not pivotal | En(s̄)). We will prove claim (B) for j = 1 and the general claim will follow
by induction.

• Pick any s̄′ ∈ En(s̄) with s′n+1 such that n+ 1 is not pivotal and there is backtracking.
Let m < k be the last two pivotal times wrt n, i.e. k = max(Pn) and m =
max(Pn − {k}).

• When is there no backtracking beyond time k?
In other words, when does m continue to remain pivotal? Precisely when y−n+1 ∈
CSym(y

+
m;C0+δ). Now we know that m is the largest pivotal time before time k, for all

sequences pivoted from s̄. Thus using the pivot-shadow lemma 10.7 for time k− 1, we
have y−k ∈ CSym(y

+
m;C0 + δ). This means that we have a chain ym = x0, x1, . . . , xi =

y−k with ym, y
+
m, x1 (C0 + δ)-aligned. It turns out that there are plenty of choices for

a′k so that the sequence ym = x0, x1, . . . , xi = y−k , xi+1 = y−n+1 is an appropriate chain,

so that y−n+1 ∈ CSym(y
+
m;C0 + δ).

Claim (C). Let s̄′ be a sequence pivoted from s̄ such that n+ 1 is not a pivot. Let m < k
be the last two pivotal times wrt time n. If a′k ∈ S such that xi−1, y

−
k , yk, y

−
n+1 are C0-aligned,

then ym = x0, x1, . . . , xi = y−k , xi+1 = y−n+1 is a (C0 + δ, 2(C0 + 2δ) + 1)-chain.

Proof of claim C. Note that ym = x0, x1, . . . , xi = y−k is a (C0 + δ, 2(C0 + 2δ) + 1)-chain. So
it is enough to show that:

• d(y−k , y
−
n+1) ≥ 2(C0 + 2δ) + 1

• (xi−1, y
−
n+1)y−k

≤ C0 + δ
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For the first point, note that d(y−k , y
−
n+1) ≥ d(y−k , yk)− (y−k , y

−
n+1)yk ≥ D−C0 and that D >>

C0. Next note that xi−1, y
−
k , yk, y

−
n+1 are C0-aligned and d(y−k , yk) = d(o, ako) ≥ D >> C0, so

by lemma 10.3, xi−1, y
−
k , y

−
n+1 are (C0 + δ)-aligned. This takes care of the second point. ■

• For how many choices of a′k is the sequence xi−1, y
−
k , yk, y

−
n+1 C0-aligned?

This happens exactly when (xi−1, yk)y−k
= ((y−k )

−1xi−1, ako)o ≤ C0 and (y−k , y
−
n+1)yk =

(a−1
k o, (bkwk . . . bnwn)o)o ≤ C0. By Schottky property, there are at least 98|S|/100

such choices of a′k!
• Therefore the conditional probability that there is backtracking beyond k, given that
n+ 1 is not pivotal and En(s̄) is at most (1− 98/100)/(98/100) which is lesser than
1/10. P(An+1 < q − 1 | En(s̄), n + 1 is not pivotal) ≤ P(k is not pivotal wrt n + 1 |
En(s̄), n+ 1 is not pivotal) ≤ 1/10. This proves the case j = 1.

■

Claims (A) and (B) imply that P(An+1 ≥ i | En(s̄)) ≥ P(An + U ≥ i | En(s̄)) for all i. And
this proves the proposition. ■

11. Indentifying Poisson boundaries without logarithmic moment conditions

Our primary aim in this section is to give a proof of the following theorem from [CFFT22]:

Theorem 11.1. Let G be a non-elementary hyperbolic group and µ ∈ Prob(G) be a generating
probability measure with finite entropy. Let ∂G be the Gromov boundary of G and ν be the
hitting measure on ∂G induced by the random walk on G with step law µ. Then the Poisson
boundary of (G, µ) is (∂G, ν).

[CFFT22]’s proof requires three main ingredients: studying transformed random walks
(obtained by stopping the random walk at appropriate times, to be described more precisely
below), Kaimanovich’s entropy criterion and the pin-down approximation method. Since our
step law does not have finite logarithmic moment apriori, the strip approximation method is
not available for use. Instead, we use the pin-down approximation method, which is essentially
an information-theoretic version of sublinear tracking of random sample paths.

Informally, here’s the idea: fix a boundary point ξ ∈ ∂G and consider the conditional
random walk, conditioned to hit ξ at time infinity. Let An be the partition of the path space
that segregates sample paths by their location at time n, i.e. for any two sample paths x,x′,

x
An∼ x′ if xn = x′

n. A sequence of partitions (Pn) is said to pin down the random walk if
the conditional entropy

Hξ(An | Pn) = o(n)

The sequence (Pn) will be constructed using the method of pivots, which, together with the
stopping time trick, shows that a sample path of a random walk on a hyperbolic group can be
thought of as a concatentation of long geodesic-like segments, attached along pivots. The fact
that Hξ(An | Pn) grows sublinearly in n, means that Pn models the location of the random
walk at time n well enough.

11.1. The stopping time trick. We urge the reader to read the discussion following
proposition 10.2. In what follows, we will prove the following:
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Proposition 11.1. Let G be a countable set of isometries of a δ-hyperbolic space X and
µ ∈ Prob(G) be a non-elementary probability measure on it. For all ε > 0, there exists a
C > 0 such that for any D > 0, there exists a probability measure θ on G for which the
following hold true:

(1) There exists an (ε, C,D)-Schottky set S such that θ = κ ∗ µ2
S where κ ∈ Prob(G) and

µS is the uniform probability measure on S.
(2) (G, θ) and (G, µ) have the same Poisson boundaries.
(3) If H(µ) < ∞, then H(θ) < ∞.

Using proposition 10.2 there exists an (ε, C,D)-Schottky set S and N ∈ N>0, α > 0,
ν ∈ Prob(G) such that µN = αµ2

S + (1− α)ν. We wish to stop the random walk whenever
we pick an element of S2, record our position and start afresh, until we pick another element
of S2, whence we repeat the process.

Recall that, a stopping time for a random walk is a measurable function τ : Ω → N defined
on the path space of the random walk, such that for all n ∈ N, τ−1(n) ∈ Fn = σ(W0, . . . ,Wn),
the σ-algebra generated by the position of the random walk between time 0 and n. We will
only be concerned with stopping times that are finite P -almost everywhere. Now, given a
stopping time τ , we define the first return measure µτ on G as follows:

µτ (g) = P[Wτ = g] = P ({w ∈ Ω | wτ(w) = g})

The random walk with step law µτ is called the transformation of the random walk driven by
µ determined by the stopping time τ . In fact, the random walk with step law µτ is obtained
by restricting the source random walk to the sequence of iterations of the stopping time τ .
More precisely, we define a sequence of stopping times (τn)n≥0 as follows:

τ0 = 0

τn+1 = τn + τ ◦ U τn

where recall that U is the Bernoulli shift induced on the path space by the Bernoulli shift on
the step space and U((wn)n≥1) = (w−1

1 wn+1)n≥1. Then the random walk with step law µτ is
given by the random sequence (Wτn)n≥1.

Theorem 11.2. Let τ be a stopping time for the random walk on G with step law µ. Then
the Poisson boundary of (G, µ) is the same as that of (G, µτ ).

In order to prove theorem 11.2, we need a few lemmas, which are interesting in their own
right.

Lemma 11.1. Suppose N is a normal subgroup of G and µ̌ = p∗µ where p : G → G/N is
the canonical projection homomorphism. Then H∞(G/N, µ̌) is isomorphic to the space of all
bounded µ-harmonic functions on G that are N-invariant.

Proof. By definition,

∀g ∈ G, µ̌(gN) =
∑
n∈N

µ(gn)

Also, a function f : G → R is N -invariant, i.e. ∀g ∈ G∀n ∈ N, f(gn) = g(g), if and only if
the function f̌ : G/N → R given by f(gN) = f(g) for all g ∈ G is well-defined. Note that G
is countable so we have a countable sequence of distinct elements (ai)i≥1 such that G is a
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disjoint union of the cosets (aiN)i≥1. Suppose f is a bounded µ-harmonic function that is
N -invariant. Now observe the following:

f̌(gN) = f(g) =
∑
h∈G

µ(h)f(gh) =
∞∑
i=1

∑
n∈N

µ(ain)f(gain)

=
∞∑
i=1

f(gai)
∑
n∈N

µ(ain) [By N -invariance]

=
∞∑
i=1

f̌(gaiN)µ̌(aiN)

Thus f̌ is µ̌-harmonic. The same observation also shows that given any bounded µ̌-harmonic
function f̌ on G/N , we can lift it to a unique bounded N -invariant µ-harmonic function f
on G.

■

Lemma 11.2. Let F = F (W ) be the free semi-group generated by a finite or countably
infinite set W . Let µ be a probability measure supported on W . Then the Poisson boundary
of the random walk on F with step law µ is space F∞ = (FN, µ⊗N).

This follows from the simple fact that the position of random walk on free semi-group at
time n uniquely describes all its steps before time n. Using lemma 11.2, it follows that:

Lemma 11.3. Let F = F (W ) be the free semi-group generated by a finite or countably
infinite set W . Let µ be a probability measure supported on W and τ be a stopping time for
the random walk on F with step law µ. Then the Poisson boundary of (F, µ) is the same as
that of (F, µτ ), namely the space of infinite words F∞.

Proof of theorem 11.2. We will prove the equivalent statement that the respective spaces of
harmonic functions coincide.

• Let F be the free semi-group generated by supp(µ) and define µ̄(w) = µ(w) for all
w ∈ supp(µ) and zero otherwise. Let φ : F → G be the canonical homomorphism.

• The stopping time τ induces a stopping time τ̄ for the random walk on F with step
law µ̄, by τ̄(w̄) = τ(Φ(w̄)) for all sample paths w̄ for the random walk on F , where
Φ = φN.

• Now by lemma 11.3, (F, µ̄) and (F, µ̄ ¯tau) have the same Poisson boundary. But
G = F/ker(φ), so by lemma 11.1, we’re done.

■

We state a result from [For17]:

Theorem 11.3. Let τ be a stopping time with finite expectation. Then H(µτ ) is also finite
and we have the following relation between asymptotic entropies for the random walks driven
by µ and µτ :

h(µτ ) = E(τ)h(µ)

Now we are ready to give a proof of proposition 11.1.

Proof of proposition 11.1.
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• As observed before, there exists an (ε, C,D)-Schottky set S and N ∈ N>0, α > 0,
ν ∈ Prob(G) such that µN = αµ2

S + (1− α)ν.
• Define τ : Ω → N as follows:

τ(w) = inf{i > 0 | w−1
iN−1wiN ∈ S2}

Observe that:

µtau =
∞∑
k=0

βk ∗ ᾱ

where ᾱ = αµ2
S, β = (1− α)ν and so µN = α + β.

• τ is a stopping time which is finite P -almost everywhere. It follows from theorem 11.2
that (G, µ) and (G, µτ ) have the same Poisson boundary. Observe that:

∞∑
k=0

βk ∗ ᾱ = (α
∞∑
k=0

(1− α)kνk) ∗ µ2
S

Set κ = α
∑∞

k=0(1− α)kνk. This proves (2).
• (3) follows from theorem 11.3.

■

Remark. Proposition 11.1 concretely justifies why we worked with measures of type θ in the
section on pivots, and henceforth we shall call such measures: alternating measures.

11.2. Entropy criterion revisited. Before we proceed to describe the pin-down approx-
imation method, we set up some notation for the sake of clarity and also state a stronger
version of the entropy criterion seen in theorem 7.3.

• Consider a random walk on countable group G with step law µ. Recall that the path
space of the random walk is Ω = GN equipped with the product σ-algebra and the
probability measure P, the law of the random walk starting at identity.

• Given a partition C = {Ci} of the path space, we will denote the entropy of the
partition wrt P as:

HP(C) = H(C) = −
∑
i

P(Ci) logP(Ci)

A standard sequence of partitions associated to random walk is the one that segregates

samples paths by their position at a given time. For all w,w′ ∈ Ω, we define w
An∼ w′

if wn = w′
n.

• Now suppose (B, πB, λ) is a µ-boundary for (G, µ) where πB : (Ω,P) → (B, λ) is the
boundary map. Then by disintegration we know that for λ-almost every ξ ∈ B, the
conditional probability measures Pξ exists and P =

∫
B
Pξdλ(ξ).

• Given a partition C = {Ci} of the path space, we will denote the conditional entropy
of the partition given ξ ∈ B as:

HPξ(C) = Hξ(C) = −
∑
i

Pξ(Ci) logPξ(Ci)

and we define the conditional entropy of C given B as the average:

HB(C) =
∫
B

Hξ(C)dλ(ξ)
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• Given two partitions A and B, we denote their common refinement by their join
A ∨ B = {A ∩ B | A ∈ A, B ∈ B}. For A = (Ai) and B = (Bi) two countable
measurable paritions of the path space, we have the conditional probability Pξ(Ai |
Bj) := Pξ(Ai ∩Bj)/Pξ(Bj). Again, we have the conditional entropies:

Hξ(A | B) = −
∑
i,j

Pξ(Ai ∩Bj) logPξ(Ai | Bj)

HB(A | B) =
∫
B

Hξ(A | B)dλ(ξ)

Theorem 11.4 ([FT19]). Let (B, λ) be a µ-boundary. If the conditional entropy given B of
the steps, HB(A1) is finite, then there exists the limit:

h(B, λ) = lim
n→∞

HB(An)

n

Moreover, h(B, λ) = 0 if and only if (B, λ) is the Poisson boundary of (G, µ).

[FT19] prove theorem 11.4 as a corollary of Kaimanovich-Sobieczky’s entropy criterion for
random walks on equivalence relations. The µ-boundary of interest for us, in the case of
hyperbolic groups, will be the Gromov boundary, equipped with the hitting measure.

11.3. Pin-down approximation. Here’s the precise idea of pin-down approximation which
we briefly mentioned at the start of this section:

Lemma 11.4 (Abstract pin-down approximation). Let (B, λ) be a µ-boundary of (G, µ).
Suppose there exists a sequence of partitions (Pn) such that:

(1) HB(An | Pn) = o(n)
(2) H(Pn) = o(n) Then

lim
n→∞

HB(An)

n
= 0

.

Proof. By log-convexity we have HB(An) ≤ HB(A ∨ Pn). Also note that HB(A ∨ Pn) ≤
HB(A | Pn) +HB(Pn) whence our claim follows readily. ■

Remark. Together with the entropy criterion (theorem 11.4), the pin-down approximation
readily identifies Poission boundaries.

We will now proceed to use theory of pivots to construct the pin-down sequence of partitions.

Constructing the pin-down partitions:

• Let G be a non-elementary hyperbolic group. Fix a finite generating set Σ. Let X be
the Cayley graph of G wrt to Σ. Consider an alternating measure θ = κ ∗ µ2

S on G.
We will analyze the random walk on G with step law θ.

• Recall the discussion following proposition 10.2. Set o to be the point corresponding
to the identity element in X there and recall how we recursively constructed the
sequence (Pn)n≥0, where for n ≥ 1 each Pn ⊂ {1, . . . , n} is the set of pivotal times
before n.

Definition 11.1. A time k is said to be pivotal from infinity if k ∈ Pm for all m ≥ k, i.e
k is pivotal at time k and continues to be pivotal afterwards.
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Lemma 11.5. Let (wn) be a sample path such that wn converges to a boundary point ξ ∈ ∂G.
There exists a universal constant M = M(C, δ) such that for any time k which is pivotal from
infinity for (wn), and any geodesic γ = [e, ξ), we have d(yk, γ) ≤ M

Proof. Using lemma 10.9, we know that for any n ≥ k, the sequence o, yk1 , y
−
k2
, yk2 , . . . , y

−
kq
, ykq , y

−
n+1

is a (2C0 + 4δ,D − (2C0 + 3δ))-chain, where Pn = {k1 < · · · < kq}. k ∈ Pn by hypothesis.
Using lemma 10.5, we infer that:

(e, y−n+1)y−k
≤ (2C + 4δ) + 2δ = 2C + 6δ

(e, y−n+1)yk ≤ (2C + 4δ) + 2δ = 2C + 6δ

Thus y−k and yk lie a uniformly bounded neighbourhood of any geodesic segment [e, y−n+1],
and any geodesic ray [e, ξ). In fact, we can take M = 2C + 9δ. ■

Clearly, times pivotal from infinity mark elements that closely follow geodesic rays travelling
to infinity. We wish to pay special attention to them.

• Let α,L > 0 to decided later. For every sample path (wn) we define the following:
• Let n ≥ 1. Chop the interval [0, n] into equal-sized pieces of size α. That is,
for each integer 0 ≤ k ≤ ⌈n/α⌉, define the time interval:

Ik,α = (α(k − 1), αk] ∩ [0, n]

• For each interval Ik,α with k > 0, define:

tk =

{
time of the first pivot from infinity in Ik,α ; if atleast one such pivot exists

−1 ; otherwise

When tk ̸= −1, define pk = wtk , recording the pivotal element. Also, let p0 = e.
• Define T α

n = {t1, . . . , tn/α}. Henceforth we will call this set as the set of pivotal
times.

• Good and bad intervals: For 1 ≤ k < n/α, the interval Ik,α is said to be L-good if:

∀j ∈ Ik,α, d(wj−1, wj) ≤ L

Declare I0,α = {0} to be L-good.
• An interval which is not L-good will be called L-bad. By construction, the last interval
In/α−1,α that is the one containing n, is L-bad.

• Good distance: We define the good distance to be the sum of the distances between
consecutive good pivots.

Dα,L
n =

∑
Ik,α,Ik+1,α

L-good

d(pk, pk+1)

where we sum over those k such that 0 ≤ k < ⌈n/α⌉ and both Ik,α, Ik+1,α are L-good.
• Finally, for each bad interval we record the positions occupied by the sample path
during, before and after the bad interval. Formally, if Ik,α is a bad interval, let

Jk,α = (Ik−1,α, Ik,α, Ik+1,α) ∩ [0, n]

and define bk = (gi)i∈Jk,α the sequence of increments during the time period Jk,α.
So if Ik1,α, . . . , Iks,α are the L-bad intervals up to time n, we define the (α,L)-bad
intervals:

Bα,L
n = (bk1 , . . . , bks)
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.

Thus given a time scale α and length scale L, we have the following random variables
defined on the path space:

(1) Pivotal times T α
n : Keeping track of the pivotal times from infinity.

(2) Good distances Dα,L
n : Keeping track of the distance traveled in between good times.

(3) Bad intervals Bα,L
n : Recording all data during bad times.

We will now prove two key results. They informally mean:

• Bad intervals are somewhat rare
• Pivotal times, good distances and bad intervals pin down the location of the random
walk pretty well

Proposition 11.2 (Bad intervals are somewhat rare). Consider the random walk with step
law θ on a non-elementary hyperbolic group G. For any δ > 0, there exists α0 > 0 such that
for all α ≥ α0, there exists L ≥ 1 for which:

P(Ik,α is L-bad) ≤ δ for all n ≥ 1. for all k < ⌈n/α⌉

Proof. To begin with, let us understand when exactly do we have that Ik,α is L-bad. This
happens with either of the following are true:

(a) There is no pivot from infinity in Ik,α
(b) There is some j ∈ Ik,α such that d(wj−1, wj) > L

We handle each case now. Case (a) is a low probability event because pivots are abundant.
Using proposition 10.4 we have:

∀n, j, k ≥ 0,P
(
|Pn+j| ≥ |Pn|+ k

)
≥ P

(
j∑

i=1

Ui ≥ k

)
(∗)

where (Ui) are i.i.d. random variables with E[U1] > 0 and E[e−t0U1 ] < ∞ for some t0 > 0.
Thus there exists a t > 0 such that E[e−tU1 ] < 1. So for any β ≥ 1, we have:

P

(
β∑

i=1

Ui ≤ 0

)
= P

(
e−t

∑β
i=1 Ui ≥ 1

)
≤ E[e−t

∑β
i=1 Ui ] = (E[e−tU1 ])β (∗∗)

When does Ik,α fail to have a single pivot from infinity? This happens if and only if for each
pivotal time in Ik,α, the random walk eventually backtracks to the pivotal element. Thus,
putting m = α(k − 1),
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P
(
there is no pivot from ∞ in Ik,α

)
≤ P

(
∃β ≥ α : #Pm+β ≤ #Pm

)
≤

∞∑
β=α

P
(
#Pm+β ≤ #Pm

)

≤
∞∑

β=α

P
( β∑

i=1

Ui ≤ 0
)

[Using (∗)]

≤
∞∑

β=α

(E[e−tU1 ])β [Using (∗∗)]

=
(E[e−tU1 ])α

1− E[e−tU1 ]
< δ/2

where in the last line we have chosen α large enough. Now for case (b), note that we can
choose L large enough so that

P
(
d(e, g1) ≥ L

)
≤ δ

2α

hence, since the (gi) are i.i.d.,

P
(
d(wj−1, wj) ≥ L for some j ∈ Ik,α

)
≤

α∑
j=1

P
(
d(wj−1, wj) ≥ L

)
≤

α∑
j=1

P
(
d(e, g1) ≥ L

)
≤ α · δ

2α
=

δ

2

Combining the estimates proves the claim. ■

Proposition 11.3 (Pivotal times, good distances and bad intervals pin down the location of
the random walk pretty well). Let G be a hyperbolic group and ∂G be its Gromov boundary.
Then for all α ≥ 1, L ≥ 1, the join of the partitions induced by T α

n , Dα,L
n ,Bα,L

n pins down the
location Wn of the random walk at time n:

H∂G(An | T α
n ∨Dα,L

n ∨ Bα,L
n ) = o(n)

Proof.

• Fix a boundary point ξ ∈ ∂G. We split the set of indices tagging the intervals
Ik,α, [0, ⌈n/α⌉] into a disjoint union of indices coming from good intervals and max-
imal chains of consecutive indices of bad intervals. Using the random variables
T α
n , Dα,L

n ,Bα,L
n , we can record the following data:

• Steps made between pivots separated by bad intervals: Let ki, . . . , ki+r be a maximal
chain of indices tagging bad intervals, such that Iki+r,α is not the last interval
(containing n). So t− = tki−1

and t+ = tki+r+1
are pivotal times and p− = wt− and

p+ = wt+ are pivots. Let Wi = gt−+1 . . . gt+ , be the product of steps taken during the
said maximal chain of bad intervals (we know this due to Bα,L

n ).
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• Let plast be the last pivot. All intervals after the last pivot are bad, so let Wlast =
gt−+1 . . . gn be the product of steps taken during the last maximal chain of bad intervals
following plast (we know this due to Bα,L

n ).
• Note that wn = plastWlast.
• Now pick a geodesic ray γ = [e, ξ) and recall from lemma 11.5 that each pivot lies
in an M -neighbourhood of γ. Since there are atmost n/α many pivots, the nearst
point projection of plast on γ is determined upto an error of 2Mn/α. Now plast also
lies in an M -neighbourhood of γ, so the maximum number of choices for plast is equal
to (2Mn/α)× |B(2M)|. Thus:

Hξ(An | T α
n ∨Dα,L

n ∨ Bα,L
n ) ≤ log((2Mn/α)× |B(2M)|) = o(n)

Integrating over ∂G proves the claim.

■

Proposition 11.4. Let G be a hyperbolic group and ∂G be its hyperbolic boundary. Consider
a random walk on G with step law given by an alternating measure θ = κ ∗ µ2

S. If θ has finite
entropy then for any ε > 0, there exists α0 > 0 such that for all α ≥ α0 there exists L ≥ 1
such that:

lim sup
n→∞

H(An | T α
n ∨Dα,L

n ∨ Bα,L
n )

n
≤ ε

Proof. For a proof, see [CFFT22] lemma 2.4 and theorem 4.6. ■

Thus, it readily follows from the abstract pin-down approximation theorem 11.4 that:

Theorem 11.5. Let G be a hyperbolic group and ∂G be its Gromov boundary. Consider a
random walk on G with step law given by the alternating measure θ = κ ∗ µ2

S. If θ has finite
entropy then we have:

lim
n→∞

H∂G(An)

n
= 0

As a corollary we deduce theorem 11.1:

Proof of theorem 11.1.

• For G acting on X(its Cayley graph wrt to a finite generating set Σ) and for ϵ = 1/100
using proposition 11.1, there exists a C > 0 such that for all D > 0, there exists an
integer l > 0 and a (1/100, C,D)-Schottky set S contained in the support of µ. we
also have an alternating measure θ = κ ∗ µ2

S on G such that (G, µ) and (G, θ) have
the same Poisson boundary. The proposition also says since µ has finite entropy, so
does θ.

• Thus we consider identifying the Poisson boundary of (G, θ). Since θ is non-elementary,
almost every sample path converges to the Gromov boundary ∂G. Let λ be the hitting
measure on ∂G.

• Proposition 11.1 also says since µ has finite entropy, so does θ. Thus by theorem 11.5
and the entropy criterion, i.e. theorem 11.4, we conclude that the Poisson boundary
of (G, θ) is (∂G, λ).

■
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